Fostering STEM competency in high-school students by bridging engineering and ophthalmology through eye research

Accepted: July 29, 2025
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Recent data across the globe indicates a decline in stem competency among secondary education students. Despite persistent interest in STEM fields this decrease in preparedness could yield detrimental effects for both future scientists and engineers. To address this current trend, a collaborative partnership between a university and high school commenced. The goal was to create an advanced experiential engineering course focused primarily on ophthalmology principles, research, and hands-on solutions. Twenty-one high school students (grades 9-12) enrolled in the course. Their objective was to investigate research questions involving ocular physiology. These ranged from surveying intraocular pressure measurement methods, examining the nature of vitreous humor properties, and investigating the inherent connection between blood flow and fluid dynamics. Furthermore, students engaged in hands-on experimentation that resulted in a hydraulics-based model which attempted to link the correlation between blood pressure and intraocular pressure involved in glaucoma progression. Post-course interviews revealed three major themes: i) an increased appreciation for the utility of mathematics and its real-world use; ii) the importance of the mentor-mentee relationship and professional networking; and iii) increased access to resources beyond what is traditionally found in a high school classroom. These findings suggest that incorporating research into a high school classroom can foster positive outcomes and spark students’ interest in ophthalmology research and in STEM more broadly. This course can serve as a model in future development of project-based engineering curriculum and help broaden participation in STEM.
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 The Author(s)
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.