Costal erosion: the future of sandy beaches

Published: November 9, 2022
Abstract Views: 840
PDF: 69
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • Niki Evelpidou evelpidou@geol.uoa.gr School of Sciences, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Greece, Greece.
  • Maria Tzouxanioti School of Sciences, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Greece, Greece.
  • Alexandros Liaskos School of Sciences, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Greece, Greece.

The coastal zone is a constantly changing area and is one of the most vulnerable one because of climate crisis. In addition to the high concentration of population in coastal areas, there is also high activity in sectors such as tourism, trade and work. Increasing storms and Sea Level Rise (SLR) are likely to cause future flooding in coastal areas, bringing about significant changes in these ecosystems. The threats posed by coastal erosion are very significant, as more than 100 million people live within one meter of mean sea level, meaning that in the coming decades they will have to deal with issues of immigration, finance, social and environmental issues. This paper is an attempt to highlight the magnitude of the problem of coastal erosion, while at the same time a typical case of a coastal zone in the center of the Aegean (Greece) is examined through interpretation of collected data, mapping of the area and geospatial analysis. The results present both its future development based on different climate change scenarios, and based on different scenarios of anthropogenic activities and interventions. At the same time, methods of natural self-protection of the coastal zone against coastal erosion and sea level rise are discussed.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Agency, U. S. E. P. (2015). National Ecosystem Services Classification System (NESCS): Framework Design and Policy Application. 188. https://www.epa.gov/sites/production/files/2015-12/documents/110915_nescs_final_report_-_compliant_1.pdf
Ariffin, E. H., Sedrati, M., Daud, N. R., Mathew, M. J., Akhir, M. F., Awang, N. A., et al. (2019). Shoreline Evolution Under the Influence of Oceanographic and Monsoon Dynamics: The Case of Terengganu, Malaysia. Coastal Zone Management: Global Perspectives, Regional Processes, Local Issues, 113–130. DOI: https://doi.org/10.1016/B978-0-12-814350-6.00005-7
Balas, L., & Inan, A. (2002). A Numerical Model of Wave Propagation on Mild Slopes. J Coast Res 36:16–21. DOI: https://doi.org/10.2112/1551-5036-36.sp1.16
Barbier, E. B. (2012). Progress and challenges in valuing coastal and marine ecosystem services. Review of Environmental Economics and Policy 6:1–19. DOI: https://doi.org/10.1093/reep/rer017
Barua, P., Rahman, S. H., Barua, S., & Rahman, I. M. M. (2020). Climate change vulnerability and responses of fisherfolk communities in the South-Eastern coast of Bangladesh. Water Conserv Manage 4:20–31. DOI: https://doi.org/10.26480/wcm.01.2020.20.31
Berkes and C. Folke, F. (1998). Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience.
Bilkovic, D. M., & Davis, J. (2018). Review of boat wake wave impacts on shoreline erosion and potential solutions for the Chesapeake Bay Distribution of Diamondback Terrapins in the Chesapeake Bay View project. (17), 1–68. Retrieved from www.chesapeake.org/stac
Bird, C. F. (1985). Coastline changes : a global review
Blackburn, S., Pelling, M., & Marques, C. (2019). Chapter 38 - Megacities and the Coast: Global Context and Scope for Transformation. Coasts and Estuaries 661–669. DOI: https://doi.org/10.1016/B978-0-12-814003-1.00038-1
Blake, E. S., Kimberlain, T. B., Berg, R. J., Cangia, Losi, J. P., & Beven II, J. L. (2013). Tropical cyclone report Hurricane Sandy (AL182012) 22 – 29 October 2012. National Weather Service, National Hurricane Center. https://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf
Blue, P. (2016). Tourism. Economic activities and sustainable development. Plan Bleu Notes No. 32.
Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-levelrise. Nature Geoscience 2:488–491. DOI: https://doi.org/10.1038/ngeo553
Board, Millennium Ecosystem Assessment (2005). Ecosystems and human well-being. https://www.millenniumassessment.org/documents/document.356.aspx.pdf
Botts, H. (2011). Storm Surge Report 2011. (June).
Bulhoes, E., & Fernandez, G. B. (2011). Analysis of Shallow Water Wave Propagation and Coastal Response in Embayed Beaches. Case Study in Cape Buzios, Rio de Janeiro, Brazil. J Coast Res 64:2022–2026.
C, I. O. (2021). For community members interested in risk reduction efforts. 2.
Callaghan, J. (2008). Severe storms on the east coast of Australia 1770-2008. Griffith Centre for Coastal Management, Griffith University, Gold Coast.
Cannaby, H., Palmer, M. D., Howard, T., Bricheno, L., Calvert, D., Krijnen, J., et al. (2016). Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore. Ocean Sci 12:613–632. DOI: https://doi.org/10.5194/os-12-613-2016
Cauchi, J. P., Correa-Velez, I., & Bambrick, H. (2019). Climate change, food security and health in Kiribati: a narrative review of the literature. GlobHealth Action 12: 1603683. DOI: https://doi.org/10.1080/16549716.2019.1603683
Chen, X., & Zong, Y. (1998). Coastal erosion along the Changjiang Deltaic shoreline, China: History and prospective. Estuar Coast Shelf Sci 46:733–742. DOI: https://doi.org/10.1006/ecss.1997.0327
Choowong, M., Murakoshi, N., Hisada, K., Charusiri, P., et al. (2007). Erosion and Deposition by the 2004 Indian Ocean Tsunami in Phuket and Erosion and Deposition by the 2004 Indian Ocean Tsunami in Phuket and Phang-nga Provinces, Thailand. J Coast Res 23:1270-1276. DOI: https://doi.org/10.2112/05-0561.1
Commission, E. (2021). The EU Blue Economy Report 2021.
Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature 387:253–260. DOI: https://doi.org/10.1038/387253a0
Dahm, J. (2000). Natural Character: Concept Development in New Zealand Planning Law and Policy. 102.
Danjo, T., & Kawasaki, S. (2013). A study of the formation mechanism of beachrock in Okinawa, Japan: Toward making artificial rock. Int J GEOMATE 5:634–639. DOI: https://doi.org/10.21660/2013.9.3157
Davis, R. A. (2021). Human Impact on Coasts.
Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., et al. (2012). Climate Change Impacts on Marine Ecosystems. DOI: https://doi.org/10.1146/annurev-marine-041911-111611
Ann Rev Marine Sci 4:11-37.
Durand, G., van den Broeke, M. R., Le Cozannet, G., Edwards, T. L., Holland, P. R., Jourdain, N. C., et al. (2021). Sea-Level Rise: From Global Perspectives to Local Services. Front Mar Sci 8:709595. DOI: https://doi.org/10.3389/fmars.2021.709595
Escudero, M., Reguero, B. G., Mendoza, E., Secaira, F., & Silva, R. (2021). Coral Reef Geometry and Hydrodynamics in Beach Erosion Control in North Quintana Roo, Mexico. Front Mar Sci 8:684732. DOI: https://doi.org/10.3389/fmars.2021.684732
Evelpidou, N. (2001). Geomorphological and Environmental Study of Naxos Island Using Remote Sensing and GIS. National and Kapodistrian University of Athens
.
Evelpidou, N. (2020). Geomorphology.
Evelpidou, Niki, Karkani, A., Komi, A., Giannikopoulou, A., Tzouxanioti, M., Saitis, G., e tal. (2022). GIS-Based Virtual Field Trip as a Tool for Remote Education. Geosciences 12:12090327. DOI: https://doi.org/10.3390/geosciences12090327
Evelpidou, Niki, Pavlopoulos, K., Vassilopoulos, A., MariaTriantaphyllou, Vouvalidis, K., & Syrides, G. (2010). Yria (western Naxos island, Greece): Sea level changes in upper holocene and palaeogeographical reconstruction. Geodinamica Acta 23:233–240. DOI: https://doi.org/10.3166/ga.23.233-240
Evelpidou, Niki, Pavlopoulos, K., Vassilopoulos, A., Triantaphyllou, M., Vouvalidis, K., & Syrides, G. (2012). Holocene palaeogeographical reconstruction of the western part of Naxos island (Greece). Quaternary Intern 266:81–93. DOI: https://doi.org/10.1016/j.quaint.2011.08.002
Evelpidou, Niki, & Pirazzoli, P. A. (2014). Holocene relative sea-level changes from submerged tidal notches: A methodological approach. Quaternaire 25:313–320. DOI: https://doi.org/10.4000/quaternaire.7688
Fan, R., Wei, H., Zhao, L., Zhao, W., Jiang, C., & Nie, H. (2019). Identify the impacts of waves and tides to coastal suspended sediment concentration based on high-frequency acoustic observations. Marine Geol 408:154–164. DOI: https://doi.org/10.1016/j.margeo.2018.12.005
FAO (2020). World Fisheries and Aquaculture. FAO, Rome. https://www.fao.org/3/ca9229en/online/ca9229en.html#chapter-1_1
Ghosh, T. (2012). Sustainable Coastal Tourism: Problems and Management Options. J Geogr Geol 4:163-169. DOI: https://doi.org/10.5539/jgg.v4n1p163
Gillie, R. D. (1997). Causes of coastal erosion in Pacific island nations. J Coast Res 24:173-204.
Gogou, M., Macri, E., Katsetsiadou, K. ., Evelpidou, N., Karkani, E., & Lekkas, E. (2019). sunami hazard and sand dune protection in west Naxos Isl., Greece. Proceedings of the SafeCorfu.
Gómez-Villerías, R. S. (2022). Potential Sea Level Rise Impacts in Acapulco Diamante, Mexico. Climate. DOI: https://doi.org/10.3390/cli10030045
Gopalakrishnan, S., Landry, C. E., Smith, M. D., & Whitehead, J. C. (2016). Economics of coastal erosion and adaptation to sea level rise. Ann Rev Resour Econ 8:119–139. DOI: https://doi.org/10.1146/annurev-resource-100815-095416
Gornitz, V., Couch, S., & Hartig, E. K. (2002). Impacts of sea level rise in the New York City metropolitan area. Global and Planetary Change, 32:61–88. DOI: https://doi.org/10.1016/S0921-8181(01)00150-3
Harley, C. D. G., Hughes, A. R., Kristin, M., Miner, B. G., Sorte, C. J. B., & Carol, S. (2006). The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241. DOI: https://doi.org/10.1111/j.1461-0248.2005.00871.x
Hatzikyriakou, A., & Lin, N. (2018). Assessing the vulnerability of structures and residential communities to storm surge: An analysis of flood impact during hurricane sandy. Front Built Environ 4:00004. DOI: https://doi.org/10.3389/fbuil.2018.00004
Hauer, M. E., Evans, J. M., & Mishra, D. R. (2016). Millions projected to be at risk from sea-level rise in the continental United States. Nature Climate Change 6:691–695. DOI: https://doi.org/10.1038/nclimate2961
Hauer, M. E., Fussell, E., Mueller, V., Burkett, M., Call, M., Abel, K., et al. (2020). Sea-level rise and human migration. Nat Rev Earth Environ 1:28–39. DOI: https://doi.org/10.1038/s43017-019-0002-9
Hausmann, R. (2001). Prisoners of Geography. Foreign Policy 122: 44–53. DOI: https://doi.org/10.2307/3183225
He, Q., & Silliman, B. R. (2019). Climate Change , Human Impacts , and Coastal Ecosystems in the Anthropocene. Curr Biol 29:R1021–R1035. DOI: https://doi.org/10.1016/j.cub.2019.08.042
Higgitt, D. L., & Lu, X. (1996). Patterns of sediment yield in the Upper Yangtze basin, China. IAHS-AISH Publication 236:205–214.
Hinkel, J., & Nicholls, R. J. (2010). Assessing risk of and adaptation to sea-level rise in the European Union : An application of DIVA Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA. Mitig Adapt Strat Gl 15:703-719. DOI: https://doi.org/10.1007/s11027-010-9237-y
Howard, T., Palmer, M. D., & Bricheno, L. M. (2019). Contributions to 21st century projections of extreme sea-level change around the UK. Environ Res Commun 1:095002. DOI: https://doi.org/10.1088/2515-7620/ab42d7
Hsu, T. W., Lin, T. Y., & Tseng, I. F. (2007). Human impact on coastal erosion in Taiwan. J Coast Res 23:961–973. DOI: https://doi.org/10.2112/04-0353R.1
Imran, M. Al, Kimura, S., Nakashima, K., Evelpidou, N., & Kawasaki, S. (2019). Feasibility Study of Native Ureolytic Bacteria for Biocementation Towards Coastal Erosion Protection by MICP Method. Appl Sci 9:9204462. DOI: https://doi.org/10.3390/app9204462
IPCC (2019a). Chapter 4 - Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In :The Ocean and Cryosphere in a Changing Climate. https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands-coasts-and-communities/
IPCC (2019b). Summary for Policymakers. https://www.ipcc.ch/srccl/
IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/wg1/
IPCC (2022). The Ocean and Cryosphere in a Changing Climate. Cambridge University Press.
Jose, F., Kobashi, D., & Stone, G. W. (2007). Spectral Wave Transformation over an Elongated Sand Shoal off South-Central Louisiana, U.S.A. J Coast Res 50:757–761.
Jouffray, J. B., Blasiak, R., Norström, A. V, Österblom, H., & Nyström, M. (2020). The Blue Acceleration: The Trajectory of Human Expansion into the Ocean. One Earth 2:43–54. DOI: https://doi.org/10.1016/j.oneear.2019.12.016
Kamphuis, J. W. (2010). Introduction to coastal engineering and management. World Scientific. DOI: https://doi.org/10.1142/7021
Karkani, A., Evelpidou, N., Vacchi, M., Morhange, C., Tsukamoto, S., Frechen, M., & Maroukian, Η. (2017). Tracking shoreline evolution in central Cyclades (Greece) using beachrocks. Marine Geol 388:25–37. DOI: https://doi.org/10.1016/j.margeo.2017.04.009
Kettunen, M., Kirchholtes, U., Klok, C., Markandya, A, & Nunes, P. (2010). The Cost of Policy Inaction. Environment 0044 (May 2008), 1–16.
Khan, M. N. H., & Kawasaki, S. (2015). Formation of artificial beachrock towards inhibit of coastal erosion in Bangladesh: A review. 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015. New Innovations and Sustainability 1123–1127. DOI: https://doi.org/10.3208/jgssp.TC303-01
King, E., Conley, D., Masselink, G., Leonardi, N., & Mccarroll, R. (2019). The Impact of Waves and Tides on Residual Sand Transport on a Sediment-poor. Energetic and Macrotidal Continental Shelf 21:5535. DOI: https://doi.org/10.1029/2018JC014861
Kudale, M. D. (2010). Impact of port development on the coastline and the need for protection. Indian J Geo-Mar Sci 39:597-604.
Leatherman S.P., A. J. R. (1985). Geomorphic Analysis of South Shore of Long Island Barriers.
Lin, N., Kopp, R. E., Horton, B. P., & Donnelly, J. P. (2016). Hurricane Sandy’s flood frequency increasing from year 1800 to 2100. P Natl Acad Sci USA 113:2071–12075. DOI: https://doi.org/10.1073/pnas.1604386113
Louisor, J., Brivois, O., Mouillon, P., Maspataud, A., Belz, P., & Laloue, J. M. (2022). Coastal Flood Modeling to Explore Adaptive Coastal Management Scenarios and Land-Use Changes Under Sea Level Rise. Front Mar Sci 9:710086. DOI: https://doi.org/10.3389/fmars.2022.710086
Lu, X., & Higgitt, D. L. (1998). Recent changes of sediment yield in the Upper Yangtze, China. Environ Manage 22:697–709. DOI: https://doi.org/10.1007/s002679900140
Luisa Martínez, M., Mendoza-González, G., Silva-Casarín, R., & Mendoza-Baldwin, E. (2014). Land use changes and sea level rise may induce a “coastal squeeze” on the coasts of Veracruz, Mexico. Glob Environ Change 29:180–188. DOI: https://doi.org/10.1016/j.gloenvcha.2014.09.009
Maroukian, H., Pavlopoulos, K., Gaki-Papanastasiou, K., & Zamani, A. (2001). The consequences of the expected sea level rise in low lied coastal areas of continental Greece, for the coming century. Geographies 1:73–82.
Milon, J. W., & Alvarez, S. (2019). Coastal resources economics and ecosystem valuation. Water 11:2206. DOI: https://doi.org/10.3390/w11112206
Mo, Y., Kearney, M. S., & Turner, R. E. (2020). The resilience of coastal marshes to hurricanes: The potential impact of excess nutrients. Environ Intern 138:105409. DOI: https://doi.org/10.1016/j.envint.2019.105409
Monismith, S. G., Rogers, J. S., Koweek, D., & Dunbar, R. B. (2015). Frictional wave dissipation on a remarkably rough reef. Geophys Res Lett 42:4063–4071. DOI: https://doi.org/10.1002/2015GL063804
Nabi, M., De Vriend, H. J., Mosselman, E., Sloff, C. J., & Shimizu, Y. (2013a). Detailed simulation of morphodynamics: 2. Sediment pickup, transport, and deposition. Water Resour Res 49:4775–4791. DOI: https://doi.org/10.1002/wrcr.20303
Nabi, M., De Vriend, H. J., Mosselman, E., Sloff, C. J., & Shimizu, Y. (2013b). Detailed simulation of morphodynamics: 3. Ripples and dunes. Water Resour Res 49:5930–5943. DOI: https://doi.org/10.1002/wrcr.20457
Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment. PLoS One 10:e0118571 DOI: https://doi.org/10.1371/journal.pone.0118571
Nicholls, R. J., Marinova, N., Lowe, J. A., Brown, S., Vellinga, P., De Gusmão, D., et al (2011). Sea-level rise and its possible impacts given a “beyond 4°C world” in the twenty-first century. Phil Trans Roy Soc A 369:161–181. DOI: https://doi.org/10.1098/rsta.2010.0291
NOAA. (2008). The Value of Ports® to the Nation. https://www.noaa.gov/
NOAA (2013). National coastal population report: Population trends from 1970 to 2010. https://coast.noaa.gov/digitalcoast/training/population-report.html
OECD (2016). The Economic Consequences of Outdoor Air Pollution. Paris. DOI: https://doi.org/10.1787/9789264257474-en
Olson, K. R., & Suski, C. D. (2021). Mississippi River Delta: Land Subsidence and Coastal Erosion. Open J Soil Sci 11:139–163. DOI: https://doi.org/10.4236/ojss.2021.113008
Omori, M. (2011). Degradation and restoration of coral reefs: Experience in Okinawa, Japan. Mar Biol Res 7:3–12. DOI: https://doi.org/10.1080/17451001003642317
Oppenheimer, M., & Glavovic, B. (2019). Chapter 4: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. IPCC SR Ocean and Cryosphere. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.- O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (Eds.)]. In Press., Chapter 4(Final Draft), 1–14.
Ortiz, A. C., Roy, S., & Edmonds, D. A. (2017). Land loss by pond expansion on the Mississippi River Delta Plain. Geophys Res Lett 44:3635–3642. DOI: https://doi.org/10.1002/2017GL073079
Pelling, M., & Blackburn, S. (2014). Megacities and the coast: Risk, resilience and transformation. Routledge. DOI: https://doi.org/10.4324/9780203066423
Petropoulos, A., Evelpidou, N., Kapsimalis, V., Anagnostou, C., & Karkani, A. (2022). Sediment transport patterns and beach morphodynamics in the semi-enclosed bay of Platis Gialos, Sifnos Island, Aegean Sea. Zeitschr Geomorphol 63:157–182. DOI: https://doi.org/10.1127/zfg/2021/0682
Petropoulos, A., Kapsimalis, V., Evelpidou, N., Karkani, A., & Giannikopoulou, K. (2022). Simulation of the Nearshore Sediment Transport Pattern and Beach Morphodynamics in the Semi-Enclosed Bay of Myrtos, Cephalonia Island, Ionian Sea. J Mar Sci Engineer 10:10081015. DOI: https://doi.org/10.3390/jmse10081015
Polidorou, M., Saitis, G., & Evelpidou, N. (2021). Beachrock development as an indicator of paleogeographic evolution, the case of Akrotiri Peninsula, Cyprus. Zeitschr Geomorphol 63:3–17. DOI: https://doi.org/10.1127/zfg/2021/0677
Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., et al. (2013). Global imprint of climate change on marine life. Nat Clim Change 3:919–925. DOI: https://doi.org/10.1038/nclimate1958
Prasad, D. H., & Kumar, N. D. (2014). Coastal Erosion Studies—A Review. Int J Geosci 05:341–345. DOI: https://doi.org/10.4236/ijg.2014.53033
Sachs, J. D., Mellinger, A. D., & Gallup, J. L. (2001). The geography of poverty and wealth. Sci Am 284:70–75. DOI: https://doi.org/10.1038/scientificamerican0301-70
Saengsupavanich, C. (2020). Deconstructing a jetty to rectify the downdrift erosion. J Sustain Sci Manage 15:79-88.
Saengsupavanich, C., Yun, L. S., & Lee, L. H. (2022). Intertidal intercepted sediment at jetties along the Gulf of Thailand. Front Mar Sci 9:970592. DOI: https://doi.org/10.3389/fmars.2022.970592
Schlacher, T. A., Dugan, J., Schoeman, D. S., Lastra, M., Jones, A., Scapini, F., … Defeo, O. (2007). Sandy beaches at the brink. Diversity Distrib 13:556–560. DOI: https://doi.org/10.1111/j.1472-4642.2007.00363.x
Schwartz, M. (2005). Sea-level rise influence on Caribbean coastal erosion. J Coast Res 42:279-284.
Selamat, S. N. (2019). Multi method analysis for identifying the shoreline erosion during northeast monsoon season. J Sustain Sci Manage 14:43–54.
Sharma, K., Vo, C. J., Meybeck, M., Green, P., & Syvitski, J. P. M. (2003). Anthropogenic sediment retention : major global impact from registered river impoundments. Glob Planet Change 39:169–190. DOI: https://doi.org/10.1016/S0921-8181(03)00023-7
Small, C., & Nicholls, R. J. (2003). A global analysis of human settlement in coastal zones. J Coast Res 19:584–599.
Spencer, N., Strobl, E., & Campbell, A. (2022). Sea level rise under climate change: Implications for beach tourism in the Caribbean. Ocean Coast Manage 225:106207. DOI: https://doi.org/10.1016/j.ocecoaman.2022.106207
Stanley, D. J., & Warne, A. G. (1993). Nile Delta: Recent Geological Evolution and Human Impact. Science 260:628–634. DOI: https://doi.org/10.1126/science.260.5108.628
Storlazzi, C. D., Reguero, B. G., Cole, A. D., Lowe, E., Shope, J. B., Gibbs, A. E., et al. (2019). Rigorously Valuing the Role of U. S. Coral Reefs in Coastal Hazard Risk Reduction. USGS Open-File Report 2019-1027, 42. https://pubs.er.usgs.gov/publication/ofr20191027 DOI: https://doi.org/10.3133/ofr20191027
Gardner, T.A., Côté I.M., Gill J.A., Grant, A., Watkinson, A.R., (2003). Long-term region-wide declines in Caribbean corals. Science 301:958-60. DOI: https://doi.org/10.1126/science.1086050
Thorne, C.R., Evans, E.P., Penning-rowsell, E.C. (2007). Future flooding and coastal erosion risks. ICE Publishing. DOI: https://doi.org/10.1680/ffacer.34495
Timmerman, A., Haasnoot, M., Middelkoop, H., Bouma, T., & McEvoy, S. (2021). Ecological consequences of sea level rise and flood protection strategies in shallow coastal systems: A quick-scan barcoding approach. Ocean Coast Manage 210:105674. DOI: https://doi.org/10.1016/j.ocecoaman.2021.105674
Tsinker, G. P. (2004). Port Engineering. J. Wiley & Sons Inc.
Tzouxanioti, M. (2021). Modeling coastal erosion in western part of Naxos Island. National and Kapodistrian University of Athens.
UNCTAD (2021). Review of Maritime Report 2021. https://unctad.org/system/files/official-document/rmt2015_en.pdf
UNISDR (2017). Coastal Erosion Hazard and Risk Assessment. https://www.undrr.org/publication/coastal-erosion-hazard-and-risk-assessment
Unit, M., & Division, S. (2013). Coastal erosion risk assessment in new south Wales : limitations and potential future directions. NSW Coastal Conference, Port Macquarie, NSW 1–28.
UNWTO (2020). UNWTO World Tourism Barometer and Statistical Annex, 2020. https://www.e-unwto.org/doi/epdf/10.18111/wtobarometereng.2020.18.1.7
Vousdoukas, M. I. (2020). Sandy coastlines under threat of erosion. Nat Clim Change 10:260–263. DOI: https://doi.org/10.1038/s41558-020-0697-0
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., & Feyen, L. (2018). Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat Comm 9:1-12. DOI: https://doi.org/10.1038/s41467-018-04692-w
Warrick, J. A., Stevens, A. W., Miller, I. M., Harrison, S. R., Ritchie, A. C., & Gelfenbaum, G. (2019). World’s largest dam removal reverses coastal erosion. Sci Rep 9:1–12. DOI: https://doi.org/10.1038/s41598-019-50387-7
Weggel, J. R. (1988). Seawalls: the need for research, dimensional considerations and a suggested classification. J Coast Res 4:29–39.
Zacharias, M. (2014). Marine policy. An introduction to governance and international law of the oceans. Routledge. DOI: https://doi.org/10.4324/9780203095256
Zaggia, L., Lorenzetti, G., Manfé, G., Scarpa, G. M., Molinaroli, E., Parnell, K. E., et al. (2017). Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis. PLoS One 12:e0187210. DOI: https://doi.org/10.1371/journal.pone.0187210
Zhang, K., Douglas, B. C., & Leatherman, S. P. (2004). Global warming and coastal erosion. Climatic Change 64:41-58. DOI: https://doi.org/10.1023/B:CLIM.0000024690.32682.48

How to Cite

Evelpidou, N., Tzouxanioti, M., & Liaskos, A. (2022). Costal erosion: the future of sandy beaches. Proceedings of the European Academy of Sciences and Arts, 1(1). https://doi.org/10.4081/peasa.12