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Introduction 
The author developed the algebraic theory of periodic 

rhythm (Vuza, 1985, 1989) that subsequently served as the 
foundation of a theory of periodic rhythmic canons exposed in 
Vuza (1991, 1192a, 1992b, 1993); see also Vuza (1995) for a 
less technical presentation. In the latter theory the author studied 
especially the properties of a certain class of canons that he 
called regular complementary of maximal category. These 
canons attracted much interest from music theorists as well as 
from musicians. They were called Vuza canons by those who 
carried further the research on this subject. For a review of some 

of these developments, see for instance (Agon and Andreatta, 
2011; Andreatta, 2011). 

One concept that is essential for the theory of Vuza canons 
is the category of a canon. It was introduced in Vuza (1991, 
1192a, 1992b, 1993) as an extension of a concept employed in 
Grigor’ev and Muller (1961), where canons on two voices were 
classified as category one and category two. The category of a 
canon as defined in Vuza (1991, 1192a, 1992b, 1993) is an 
integer divisor of the number N of voices in a canon. At 
extremes we have maximal category (equal to N) and minimal 
category (equal to one). When N is prime these are the single 
possibilities. When N is not prime there may be intermediate 
situations. 

As their original name implied, all Vuza canons have 
maximal category. It is the author’s belief that interesting facts 
can be found outside of the realm of maximal category. It is the 
purpose of this paper to pinpoint at some of those facts. Its 
organization is as follows. 

The following section is a brief presentation of the essentials 
of the theory of rhythms and canons, with the purpose of 
establishing the framework for the next sections. 

The concept of canon category as defined in Vuza (1991, 
1192a, 1992b, 1993) relied on the concept of outer rhythm of a 
canon introduced in Vuza (1991, 1192a, 1992b, 1993) with the 
aid of an auxiliary construction based on regular rhythms. Even 
if the end result was proved to not depend on the particular way 
of making this construction, the regular rhythms employed 
herein neither were part of the canon under study, nor their 
choice was unique. On following, we attempt to define the outer 
rhythm and category in an “intrinsic” way, that is, by relying 
only on characteristics that are unambiguously present in the 
canon under study. The fact that the definitions are given in two 
separate sections is to emphasize that in their new form, each of 
them can be given independently from the other. 

There is a connection between category and outer rhythms, 
which is below discussed. In particular it is proved there that the 
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canons of minimal category are precisely the canons for which 
the outer rhythms are regular. 

Also, we study translation preserving maps. They provide a 
class of “natural morphisms” between canons. In particular one 
proves that maximal category can be characterized in terms of 
those maps: a canon C has maximal category if and only if the 
identity is the only translation preserving map on C. Moreover, 
these maps play a role in a procedure for computing the 
category. Additionally, one proves that the new definitions of 
outer rhythm and category agree with the original ones. 

The last three sections are devoted to a theory of canon 
partitions, introducing the general concepts, discussing partitions 
into cannons of minimal category, and presenting the essentials 
subcanons and describes their role in constructing partitions into 
subcanons of maximal category. 

We hope that the present paper succeeded to reveal some 
new aspects of the theory of rhythmic canons that would be 
interesting for music theorists as well as for musicians. For 
instance, musicians might find an interest in Proposition 6.7 and 
the discussion preceding it, that show how translation preserving 
maps can be used to “synchronize” two canons. As concerns the 
theory of partitions, musicians might for instance use it for 
assigning different melodic lines to different voices (or groups 
of voices) in a canon.  

Musicians might find interesting to learn that the same canon 
can be partitioned into subcanons of minimal category and into 
subcanons of maximal category. Thus, the two extremes may 
coexist under the arch of the same canon. 

 
 

A short introduction to the algebraic theory 
of rhythmic canons  

Let ℚ denote the rationals and ℤ the integers. 
For any r ∈ ℚ let rℤ denote the set {rn | n ∈ ℤ}. 
We write “iff” as an abbreviation for “if and only if”. 
 
Definition 2.1. (Vuza, 1985; Vuza, 1989) A periodic rhythm 

is a subset R of the rational numbers ℚ that satisfies the 
following conditions: 
i)    There is t ∈ ℚ, t > 0 such that {t + r | r ∈ R} = R. 
ii)   R is locally finite, that is, the sets R ∩ (a, b) are finite for 

any a ∈ ℚ, b ∈ ℚ, a < b. 
The smallest positive rational number that satisfies i) is 

called the period of R and is denoted by Per(R). 
In this definition, ℚ is considered as the axis of time and the 

elements of the subset R are interpreted as time markers of the 
events in the musical speech delivered by a voice or an 
instrument (by event we mean, for example, the attack of a note, 
the beat of a percussion instrument or the beginning of a silence). 

The rhythms in the examples of this paper are subsets of ℤ. 
This is for convenience only. For real musical practice the usage 
of ℚ presents the advantages of a direct correspondence between 
musical notation and numbers (such as a quarter corresponds to 
1/4) and of the possibility of having an unified formal 
representation of all kinds of rhythmic divisions, both regular 
(such as quarters and eights) and irregular (such as triplets and 
quintuplets). 

There is an action of the additive group of ℚ on the set of 
periodic rhythms defined by t + R = {t + r | r ∈R} for any t ∈ ℚ and for any periodic rhythm R. 

We say that a t ∈ ℚ stabilizes a rhythm R if t + R = R. The 

stability group of a rhythm R, that is the set {t | t ∈ ℚ, t + R = 
R}, is seen to be equal to Per(R)ℤ. The stability group acts on R 
via (t, r) → t + r and defines thus a decomposition of R into 
orbits. The number of such orbits equals the number of elements 
of any set R ∩ [a, a + Per(R)) (which is finite since R is locally 
finite) and is called the number of beats per period of R. 

 
Definition 2.2. (Vuza, 1985, 1989) A regular rhythm is a 

periodic rhythm for which the number of beats per period equals 
one. Equivalently, it is a rhythm of the form t + rℤ with t ∈ ℚ, 
r∈ ℚ, r > 0. 

 
Definition 2.3. (Vuza, 1985, 1989) Two periodic rhythms R 

and S are called equivalent if they belong to the same orbit with 
respect to the action of ℚ, that is, if there exists t ∈ ℚ such that 
t + R = S. 

Any equivalence class for the above relation is called a 
rhythmic class. 

If ℛ is a rhythmic class we define Per(ℛ) as the period of 
any rhythm belonging to ℛ. 

 
Definition 2.4. (Vuza, 1991, 1192a, 1992b, 1993, 1995) A 

periodic rhythmic canon is a finite set  
 

C = {R1, …, RN}                                                                  (2.1) 
 

of equivalent periodic rhythms. The common class of these 
rhythms is called the inner class of C. The common period of 
these rhythms is called the period of C and is denoted by Per(C). 
The number N of rhythms in C is called the number of voices. 

Since all rhythms and canons to be considered below will 
be periodic, we shall omit the adjective “periodic”. 

The canon 2.1 models an ensemble of N voices in which 
each voice repetitively executes (in a loop) a rhythmic pattern 
that is the same for all voices, except for a delay between any 
pair of voices constant through the duration of the canon. 

A canon as defined here is an unordered set; thus {R, S} and 
{S, R} represent the same canon. Equality of canons is to be 
understood in the set-theoretic sense: two canons C1 and C2 are 
equal if for every R ∈ C1 we have R ∈ C2 and for every S ∈ C2 

we have S ∈ C1. 
It should be emphasized that the presented model refers only 

to the rhythmic aspect, ignoring the melodic aspect of the canon. 
Canons will be denoted by bold characters, possibly 

endowed with subscripts. 
 
Definition 2.5. (Vuza, 1991, 1192a, 1992b, 1993, 1995) Let 

C be a canon as in (2.1). The resultant of C is the rhythm Res(C) 
equal to the set-theoretic union ⋃N

i     =1Ri    of the rhythms in C. 
The resultant class of C, denoted by RES(C), is the rhythmic 
class of Res(C). 

 
The next four definitions are reproduced from Vuza (1991, 

1192a, 1992b, 1993) where the concepts of outer rhythm and 
of category of a canon were introduced with the aid of an 
auxiliary construction called “meter of order k”. In the next two 
sections we shall give new definitions of the outer rhythm and 
of the category that rely solely on intrinsic properties of a canon 
and do not make use of any auxiliary construction, while in 
Section 6 we shall prove that the new definitions agree with the 
original ones. 
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Definition 2.6. Let C= {R1, . . . , RN} be a canon on N voices. 
A meter of order k ≥ 1 on C is a canon M = {S1, . . . , SN} formed 
of regular rhythms and satisfying the conditions below: 
i)    Per(M) = k Per(C); 
ii)   For any couple i, j ∈{1, . . . , N}, there is tij ∈ ℚ such that 

Ri = tij + Rj and Si = tij + Sj. 
In the original definition from Vuza (1991, 1192a, 1992b, 

1993) the condition Si ⊂ Ri for 1 ≤ i ≤ N was also imposed. It 
turns out this is not needed for what follows.  

 
Definition 2.7. A metric class of order k associated to a 

canon C is the resultant class of a meter of order k on C. 
For a given k > 1 several metric classes of order k may be 

associated to a canon C. However, there is only one metric class 
of order 1 associated to C.  

 
Definition 2.8. The outer rhythmic class of a canon C is the 

metric class of order 1 associated with C. Any rhythm belonging 
to that rhythmic class is called an outer rhythm for C. 

 
Definition 2.9. The category of the canon C is the integer 

obtained by dividing the number of voices N by the integer 
Per(C)/Per(S), where S is an outer rhythm for C. The category 
of a canon is called maximal (respectively minimal) if it is equal 
to the number of voices (respectively equal to 1). 

The fact that Per(C)/Per(S) is an integer that divides the 
number of voices was proved in Vuza (1991, 1192a, 1992b, 
1993). It will be proved again with other arguments in the 
following. 

 
Definition 2.10. (Vuza, 1991, 1192a, 1992b, 1993, 1995) A 

rhythmic canon C as in (2.1) is called regular complementary 
if the following conditions are satisfied: 
i)    Ri ∩ Rj = ∅ for any i ≠ j; 
ii)   Res(C) is a regular rhythm. 

 
The simplest regular complementary canons are of minimal 

category. 
Regular complementary canons of maximal category were 

studied in Vuza (1991, 1192a, 1992b, 1993) and are nowadays 
referred as “Vuza canons”. Their construction is rather 
complex. For instance a theorem proved in Vuza (1991, 
1192a, 1992b, 1993) states that a Vuza canon needs at least 
six voices.  

However, in this paper we shall not focus on Vuza canons 
but on other classes of canons and canon constructions that may 
be interesting for the musician. 

 
 

An intrinsic definition of outer rhythms 
In the previous section we have described the action of ℚ on 

the set of rhythms. In addition to that we may introduce an action 
of ℚ on the set of canons: if C is a canon as in (2.1) we define 

                                                                                               
t + C = {t + R1, …, t + RN}.                                                 (3.1) 

 
We say that a t ∈ ℚ stabilizes a canon C if t + C = C. 

According to what was said in Section 2 about the equality of 
canons, the fact that t stabilizes C means that the rhythms in the 
right hand of (3.1) are a permutation of the rhythms in the right 
hand of (2.1).                                                                                   

Definition 3.1. For any periodic rhythm R and any canon 
C let Out(R, C) be the set {t | t ∈ ℚ, t + R ∈ C}. 

 
Proposition 3.2.  

i)    Out(R, C) ≠ ∅  iff R is equivalent to the rhythms of C. 
ii)   For any t ∈ ℚ we have Out(t + R, C)  =  –t + Out(R, C) = 

Out(R, –t + C). 
iii)  If ∅ ≠ Out(R, C1) ⊂ Out(R, C2) then C1 ⊂ C2. 
iv)  If 0 ∈ R then Out(R, C) ⊂ Res(C). 
v)   Assuming Out(R, C) ≠ ∅, a t ∈ ℚ stabilizes Out(R, C) iff it 

stabilizes C. 
vi)  Out(R, C) is a periodic rhythm whose period divides Per(C). 

Proof: i) and ii) follow immediately from definitions. 
For iii), since Out(R, C1) ≠ ∅, for any R1 ∈ C1 there is t such 

that t + R = R1. This implies t ∈ Out (R, C1) and hence t ∈ 
Out(R, C2), meaning that R1 = t + R ∈ C2. 

For iv), if t ∈ Out(R, C) then t + R ∈ C and also t ∈ t + R 
as 0 ∈ R, therefore t is contained in a rhythm of C and so t ∈ 
Res(C). 

v) is a consequence of iii) and of the second equality in ii).  
Since Per(C) stabilizes C, it follows from v) that it stabilizes 

Out(R, C) which means that Out(R, C) is a periodic subset 
whose period divides Per(C). When 0 ∈ R, iv) shows that Out(R, 
C) is locally finite since it is included in a finite union of locally 
finite subsets. In the general case, let t0 be any element of R. 
Since 0 ∈ –t0 + R it follows that Out(–t0 + R, C) is locally finite, 
hence Out(R, C) is also locally finite because of the first equality 
in ii).  

 
It follows from Proposition 3.2 that the rhythmic class of 

Out(R, C) does not depend on the choice of R as long as Out(R, 
C) ≠ ∅.  

 
Definition 3.3. Any rhythm Out(R, C) ≠ ∅ is called an outer 

rhythm of C. The outer class OUT(C) is the rhythmic class of 
the outer rhythms of C. 

All outer rhythms considered in the following will be 
assumed non void. 

 
Proposition 3.4. Let the canon C consist of regular rhythms 

and let 0 ∈ R. Then Out(R, C) = Res(C). 
Proof: by Proposition 3.2 iv) we already know that Out(R, 

C) ⊂ Res(C). To prove the converse inclusion, let s belong to 
some rhythm of C. The latter is necessary of the form t + R, 
hence s = t + r for some r ∈ R. Since R is regular and 0 ∈ R we 
have r + R = R. Therefore s + R = t + r + R = t + R and t + R ∈ 
C, meaning that s ∈ Out(R, C).  

 
 

An intrinsic definition for the category  
of a canon 

Let C be any canon on N voices as in (2.1). 
Let O(C) be the stability group of C for the action defined 

in Section 3, that is, the set of t ∈ ℚ for which t + C = C.  
Let I(C) be the stability group of any Ri in C, that is, the set 

of t ∈ ℚ  for which t + Ri = Ri; from the definition of a canon, 
I(C) does not depend on the choice of Ri in C. 

I(C) and O(C) are locally finite subgroups of ℚ and I(C) ⊂ 
O(C), therefore the quotient group O(C)/I(C) is finite. 

The group O(C)  acts on C via the restriction of the action 
of ℚ.  
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Proposition 4.1. The number N of voices in the canon C 
equals the number of elements of the group O(C)/I(C) times the 
number of orbits of the action of O(C) on C. 

Proof: according to a well-known result from algebra, 
whenever a commutative group G acts on a set, there is a 
canonical bijection between the orbit of any element in the set 
and the quotient of G by the stability group of that element. 

When applying the above result to the action of O(C) on 
C, we first observe that I(C) is the common stability group for 
any element in C. Therefore, there exist canonical bijections 
between any orbit of the named action and the finite group 
O(C)/I(C). It follows that all orbits have the same number of 
elements, equal to the number of elements of the group 
O(C)/I(C). Since the orbits realize a partition of C, the result 
follows.  

 
Definition 4.2. The category of a canon C on N voices is 

the quotient of N by the number of elements in O(C)/I(C). 
According to Proposition 4.1, the category is an integer that 

divides N. Minimal category equals one, maximal category 
equals N. The category of a canon with a prime number of voices 
can be either maximal or minimal. 

 
From the above discussion we have immediately the 

following result. 
Proposition 4.3. 

i)    The category of C equals the number of orbits of the action 
of O(C) on C. 

ii)   C has minimal category iff O(C) acts transitively on C. 
iii)  C has maximal category iff O(C) = I(C). 

 
 

The relation between category and  
outer rhythms 

Proposition 5.1. Let C be a canon on N voices and let S be 
an outer rhythm of C. The category of C equals N divided by 
the integer Per(C)/Per(S). 

Proof: By definition the category equals N divided by the 
number of elements of the group O(C)/I(C). We have I(C) = 
Per(C)ℤ by the definition of Per(C). As concerns O(C), it is not 
only the stability group of C but also the stability group of S, as 
shown by Proposition 3.2 v). Therefore we have O(C) = 
Per(S)ℤ. Since I(C) ⊂ O(C), Per(C)/Per(S) is an integer. It is 
easily proved that Per(S)ℤ/Per(C)ℤ is isomorphic with the group 
of integers modulo Per(C)/Per(S). Therefore, the number of 
elements in O(C)/I(C) equals Per(C)/Per(S).  

 
Proposition 5.2. The category of a canon equals the number 

of beats per period of any of its outer rhythms. 
Proof: let S = Out(R, C) be an outer rhythm of the canon C. 

By Proposition 4.3 i), the category of C equals the number of 
orbits of the action of O(C) on C. By its definition, the number 
of beats per period of S equals the number of orbits for the action 
on S of the stability group of S. By Proposition 3.2 v), the latter 
group equals O(C). 

Every action of a group on a set defines a partition of that 
set into orbits and every partition of a set defines an equivalence 
relation on that set. 

Let us then consider the equivalence relations on S and on 
C defined by the actions of O(C) and let U : S → C be the map 
defined by U(t) = t + R for any t ∈ S = Out(R, C). We prove that 

U is compatible in both directions with the named relations, that 
is, s1 and s2 are equivalent iff U(s1) and U(s2) are equivalent. 

Let s1,  s2 ∈ S be equivalent. By definition this means there 
is t ∈ O(C) such that s2 = t + s1. Then U(s2) = s2 + R = t + s1 + R 
= t + U(s1), showing that U(s1) and U(s2) are equivalent. 

Let s1,  s2 ∈ S be such that U(s1) and U(s2) are equivalent. 
By definition this means there is t ∈ O(C) such that U(s2) = t + 
U(s1). By the definition of U this means that s2 + R = t + s1 + R. 
It follows that t + s1 – s2 belongs to the stability group of R, 
which equals I(C) since R must be in the same rhythmic class 
as the rhythms in C. Since I(C) ⊂ O(C) we have t + s1 – s2 ∈ 
O(C) and since t ∈ O(C) we also have s1 – s2 ∈ O(C) showing 
that s1 and s2 are equivalent. 

Let Û be the map between the set of orbits of S and the set 
of orbits of C that maps the orbit of s into the orbit of U(s). By 
what was proved above, Û is correctly defined and injective. 
Since U is surjective, Û is also surjective. Therefore Û 
establishes a bijection between the set of orbits of S and the set 
of orbits of C, showing in particular that these sets have the same 
number of elements.  

 
Proposition 5.3. A canon has minimal category iff its outer 

rhythms are regular. 
Proof: it follows from Proposition 5.2 taking into account 

that regular rhythms are precisely the rhythms with one beat per 
period.  

 
 

Translation preserving maps 
Definition 6.1. Let C1 and C2 be canons. A map π : C1 → 

C2 is called translation preserving if for any t ∈ ℚ and R, S ∈ 
C1, the relation t + R = S implies t + π(R) = π(S). 

 
The order relation ≤ between rhythmic classes was defined 

in Vuza (1985): given rhythmic classes ℛ1 and ℛ2, we write ℛ1 
≤ ℛ2 if there are rhythms R1 ∈ ℛ1 and R2 ∈ ℛ2 such that R1 ⊂ 
R2 in the set-theoretic sense. 

The antisymmetry of the above defined relation may be 
established as a consequence of the local finitude of rhythms. 

Proposition 6.2. For any canons C1 and C2 the following 
are equivalent. 

There exists a translation preserving map π : C1 → C2. 
Per(C2) divides Per(C1) and OUT(C1) ≤ OUT(C2). 
Proof: suppose i) is satisfied. Let R be any rhythm in C1. 

Since Per(C1) + R = R it follows from the definition of a 
translation preserving map that Per(C1) + π(R) = π(R). Hence 
Per(C1) stabilizes π(R) ∈ C2 which implies that Per(C2) must 
divide Per(C1). Let now t ∈ Out(R, C1). Since R ∈ C1 and t + R 
∈ C1, again by the definition of a translation preserving map we 
obtain t + π(R) = π(t + R) ∈ C2 which implies t ∈ Out(π(R), C2). 
Therefore Out(R, C1) ⊂ Out(π(R), C2); as the former is a rhythm 
of class OUT(C1) and the latter is of class OUT(C2), this proves 
OUT(C1) ≤ OUT(C2). 

Suppose ii) is satisfied. Let R1 be any rhythm in C1 and let 
S2 be any rhythm in C2. By the definition of the order of 
rhythmic classes there is t such that Out(R1, C1) ⊂ t + Out(S2, 
C2). By Proposition 3.2 ii) we have t + Out(S2, C2) = Out(–t + 
S2, C2). Setting R2 = –t + S2 we have by the above Out(R1, C1) ⊂ 
Out(R2, C2). To construct π, take any R ∈ C1. There is t such 
that R = t + R1. The latter equality implies that t ∈ Out(R1, C1) 
so we will also have t ∈ Out(R2, C2), meaning that t + R2 ∈ C2. 
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Define π(R) = t + R2. We must prove that the definition does not 
depend on the choice of t. Let s be another rational that satisfies 
R = s + R1. It follows that s – t stabilizes R1, hence is a multiple 
of Per(C1). Since Per(C2) divides Per(C1), we have that s – t also 
stabilizes R2 which implies s + R2 = t + R2 showing that the 
definition is correct.  

 
Proposition 6.3. If Per(C1) = Per(C2) and π : C1 → C2 is 

translation preserving then the following are true. 
i)    π is injective. 
ii)   If π is bijective then π-1 is translation preserving.  

Proof: for i), let R, S ∈ C1 be such that π(R) = π(S). There 
is t such that t + R = S. Since π is translation preserving this 
implies t + π(R) = π(S). Together with π(R) = π(S) this shows 
that t stabilizes π(R) ∈ C2, hence Per(C2) divides t. Since Per(C1) 
= Per(C2) we obtain that t also stabilizes R, hence R = t + R = S 
which completes the proof. 

For ii), let R, S ∈ C2 be such that t + R = S. We have to prove 
that t + π-1(R) = π-1(S). Since π-1(R) and π-1(S) belong to C1 there 
is u such that u + π-1(R) = π-1(S), which implies u + R = S as π is 
translation preserving. Therefore t – u stabilizes R and therefore 
is a multiple of Per(C2) = Per(C1). Hence t – u also stabilizes 
π–1(R) from which we get t + π-1(R) = u + π-1(R) = π-1(S). 

 
Proposition 6.4. Any translation preserving map π : C → 

C is bijective, its inverse is translation preserving and there is t 
∈ O(C) such that π(R) = t + R for any R ∈ C. 

Conversely, for any t ∈ O(C), the map π : C → C defined 
by π(R) = t + R is translation preserving. 

Proof: clearly if t ∈ O(C) then the map π : C → C given by 
π(R) = t + R is well defined and translation preserving. 

Conversely, let π : C → C be any translation preserving map 
and let R0 be some rhythm in C. Since R0 and π(R0) both belong 
to C, there is t0 such that t0 + R0 = π(R0). Let now R be any other 
rhythm in C. There is t such that R = t + R0. Since π is translation 
preserving we obtain π(R) = t + π(R0) = t + t0 + R0 = t0 + t + R0 
= t0 + R. Therefore t0 + C = C and π(R) = t0 + R. Since the inverse 
of π is given by π-1(R) = –t0 + R, it is also translation preserving. 

 
Proposition 6.5. For any canon C the following are 

equivalent. 
i) The identity is the only translation preserving map π : C → C. 
ii) The category of C is maximal. 
Proof: we know from Proposition 4.3 iii) that the category 

of C is maximal iff every stabilizer of C is a multiple of Per(C), 
which according to Proposition 6.4 means that the identity is the 
only translation preserving map on C.  

 
Proposition 6.6. For any canons C1 and C2 the following 

are equivalent. 
i)    There exists a bijective translation preserving map π : C1 → 

C2 whose inverse is also translation preserving. 
ii)   Per(C1) = Per(C2) and there exists a bijective translation 

preserving map π : C1 → C2. 
iii)  C1 and C2 have the same number of voices, the same period 

and Out(C1) ≤ Out(C2). 
iv)  C1 and C2 have the same number of voices, the same period 

and the same outer class. 
Proof: py Proposition 6.2 applied to π and to π-1, i) ⇒ ii) 

and i) ⇒ iv). By Proposition 6.3, ii) ⇒ i). Clearly iv) ⇒ iii). 
It remains to prove iii) ⇒ i). By Proposition 6.2 there exists 

a translation preserving map π : C1 → C2. Since Per(C1) = 

Per(C2), Proposition 6.3 implies that π is injective, therefore 
bijective as it acts between sets with equal numbers of elements. 
By Proposition 6.3, this implies that π-1 is translation preserving.  

 
We may now consider the relation between the new and the 

original definitions of outer rhythm and category. 
Within the algebraic framework developed here, it is seen 

that giving a meter on a canon C amounts to giving a canon M 
composed of regular rhythms together with a bijective 
translation preserving map π : M → C.  

Indeed, let C = {R1, …, RN} and let M and π be given. Set Si 
= π-1(Ri). For every i, j there is tij ∈ ℚ such that Si = tij + Sj. Then 
since π is translation preserving we also have Ri = π(Si) = tij + π(Sj) 
= tij + Rj. On the other hand, by Proposition 6.2 the existence of π 
implies that Per(C) divides Per(M), therefore M satisfies the 
definition of a meter of order k = Per(M)/ Per(C) on C. 

Conversely, let M = {S1, …, SN} be a meter of order k on C. 
Define π by π(Si) = Ri. Given i and j, let s ∈ ℚ be such that s + 
Si = Sj. By the definition of a meter there is tij ∈ ℚ such that tij + 
Si = Sj and tij + Ri = Rj. It follows that s – tij stabilizes Si, therefore 
it is a multiple of Per(M), Since Per(M) is a multiple of Per(C) 
by the definition of a meter, it follows that s – tij stabilizes also 
Ri. Consequently s + π (Si) = s + Ri = tij + Ri = Rj = π(Sj) which 
shows that π is translation preserving. 

In the case of a meter of order 1, Proposition 6.6 shows that 
OUT(C) = OUT(M). We also know from Proposition 3.4 that 
in the case of a canon M composed of regular rhythms, OUT(M) 
= RES(M). Therefore OUT(C) = RES(M). We see thus that the 
new definition of OUT(C) agrees with the original definition of 
OUT(C) as the resultant class of a meter of order 1. 

According to its original definition, the category of C was 
equal to the number of voices N divided by the quotient 
Per(C)/Per(RES(M)) where M was a meter of order 1 on C. 
From the above discussion we have Per(RES(M)) = 
Per(OUT(C)). Consequently the original category equals N 
divided by the quotient Per(C)/Per(OUT(C)) which by 
Proposition 5.1 agrees with the new definition.  

 
Translation preserving maps offer a natural way for 

“synchronizing” canons, by establishing a correspondence π : 
C1 → C2 between two canons C1, C2 that are not necessarily 
built on the same inner class. Under the hypotheses specified by 
Proposition 6.6 iv), any such map is bijective and its inverse is 
also translation preserving. Consequently, if π0 : C1 → C2 is 
translation preserving, any other such map π : C1 → C2 is of the 
form π = π0s with s : C1 → C1 translation preserving. By 
Proposition 6.5, s may be different of the identity map iff the 
category of C1 (equal to the category of C2) is not maximal. 
Therefore, under the conditions specified by Proposition 6.6 iv), 
maximal category is the necessary and sufficient condition for 
the unicity of the translation preserving map π : C1 → C2.  

 
The usefulness of “synchronizing” two canons can be also 

illustrated by the following construction. Let ⨁ be a binary law 
on the set of periodic rhythms that commutes with translations, 
in the sense that t + (R ⨁ S) = (t + R) ⨁ (t + S); in particular ⨁ 
can be any of ∪, ∩ or \.  

 
Proposition 6.7. For any canons C1, C2 and any translation 

preserving map π : C1 → C2, the set {R ⨁ π(R) | R ∈ C1} is a 
canon. 

Proof: We have to prove that all rhythms of the above set 
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belong to the same rhythmic class. Let R and S by rhythms of 
C1. There is t such that t + R = S. Since π is translation preserving 
we have t + π(R) = π(S). Then by the property of ⨁ we have t + 
(R ⨁ π(R)) = (t + R) ⨁ (t + π(R)) = S ⨁ π(S), proving thus that 
R ⨁ π(R) and S ⨁ π(S) belong to the same rhythmic class.  

 
We close with the description of a procedure for determining 

the category of a canon based on translation preserving maps.We 
start with some algebraic preliminaries. 

Given a set R and an equivalence relation ρ on R, a map f : R 
→ R is said to be compatible with ρ if f(x1) is equivalent with f(x2) 
whenever x1 and x2 are equivalent. We have already encountered 
a similar situation in the proof of Proposition 5.1; however, here 
we demand compatibility only in the forward direction. Let Rρ be 
the set of equivalence classes for ρ. Starting from f we define the 
map fρ : Rρ → Rρ that sends the class of x into the class of f(x); the 
compatibility of f with ρ ensures that fρ is well defined. 

If g : R → R is another map compatible with ρ, then (fg)ρ = 
fρgρ. In particular this shows that (f k)ρ = (fρ)k for any integer k ≥ 
1. Likewise, if f is compatible and bijective and f -1 is also 
compatible, then fρ is bijective.  

One situation when we may apply the above is when 
together with f we are given a surjective map φ : R → C. The 
relation ρ is defined by calling equivalent any x1 and x2 for which 
φ(x1) = φ(x2). Since in this case φ establishes a canonical 
bijection between Rρ and C, the above construction gives a map 
fρ : C → C such that fρ(φ(x)) = φ(fρ(x)) for every x ∈ R. 

Another situation will be when R is defined by the action of 
a group, as we have already seen in the preceding sections. 

Consider now a rhythm R together with the action of a 
subgroup G ≠ {0} of the stability group of R; G is of the form 
kPer(R)ℤ for some integer k ≥ 1. For every r ∈ R let the 
successor σ(r) of r be the least element in R strictly greater than 
r and let the predecessor π(r) of r be the greatest element in R 
strictly less than r. Because R is locally finite the successor and 
the predecessor are well defined. 

 
Proposition 6.8. σ and π are compatible with the 

equivalence defined by the action of G. 
Proof: We shall make the proof for σ, the proof for π being 

similar. Let r and r + g be any two equivalent elements in R, 
with g ∈ G. Since σ(r) ∈ R and g stabilizes R, we also have σ(r) 
+ g ∈ R. Since σ(r) > r we also have σ(r) + g > r + g. If there 
were any element s of R satisfying r + g < s < σ(r) + g, then s – 
g would be an element of R satisfying r < s – g < σ(r) which 
would contradict the definition of σ(r). Therefore σ(r + g) = σ(r) 
+ g which shows that σ(r) and σ(r + g) are equivalent. 

Obviously, the maps σ and π are inverse to each other. Since 
both are compatible with the equivalence defined by G, it 
follows that the map σG constructed from σ on the set RG of 
equivalence classes is bijective. Since RG is a finite set we may 
consider the order of σG as an element of the finite permutation 
group of RG. 

 
Proposition 6.9. When G = Per(R)ℤ the order of σG equals 

the number of beats per period of R. 
Proof: let n be the number of beats per period of R. For any 

r ∈ R there are exactly n elements in the set R ∩ [r, r + Per(R)). 
Consequently σn(r) = r + Per(R) and so σn(r) and r are 
equivalent, implying that (sG)n is the identity map. On the other 
hand, if k < n then σk(r) ∈ [r, r + Per(R)) and hence it cannot be 
equivalent with r.  

Consider now a canon C together with its outer rhythm RO 
= Out(R, C). The map that sends r ∈ RO into r + R ∈ C is 
surjective and the equivalence defined by it is precisely the 
equivalence defined by the action of Per(C)ℤ. Since the latter 
group stabilizes RO, it follows that a map sC can be defined on C 
so that σ(r) + R = sC(r + R) for every r ∈ RO, where σ is the 
successor map on RO.  

 
Proposition 6.10. The category of C equals the least integer 

k ≥ 1 for which (sC)k is translation preserving. 
Proof: as remarked at the beginning of our discussion we 

have sk(r) + R = (sC)k(r + R) for every r ∈ RO and every k ≥ 1. If 
k equals the category of C, by Proposition 5.2 it also equals the 
number of beats per period of RO. As we have seen in the proof 
of Proposition 6.9, in this situation sk(r) = r + Per(RO). Therefore 
(sC)k(r + R) = Per(RO) + r + R. In other words, (sC)k(S) = Per(RO) 
+ S for any rhythm S in C. Since Per(RO) stabilizes C by 
Proposition 3.2 v), it follows from Proposition 6.4 that (sC)k is 
translation preserving. 

Conversely, let k ≥ 1 be such that (sC)k is translation 
preserving. By Proposition 6.4 there is a multiple t of Per(RO) 
such that (sC)k(S) = t + S for every S ∈ C. It follows that sk(r) + 
R = (sC)k(r + R) = t + r + R, hence  sk(r) - t - r is a multiple of 
Per(C). As Per(C) is a multiple of Per(RO) it follows that sk(r) - 
t - r is a multiple of Per(RO) and so is sk(r) - r because t is a 
multiple of Per(RO). Therefore sk(r) and r are equivalent for the 
relation defined by the action of G = Per(RO)ℤ on RO. As this is 
true for every r ∈ RO it results that (sG)k is the identity map. 
Hence k must be greater or equal to the order of sG, which by 
Proposition 6.9 equals the number of beats per period of RO, 
which by Proposition 5.2 equals the category of C. Hence k must 
be no less than the category. □ 

 
Definition 6.11. A canon C is in normal form if it is written as 
                                                                                              

C = {t1 + R, …, tN + R}                                                        (6.1) 
 
where ti ∈ [0, Per(R)) for 1 ≤ i ≤ N and ti < ti+1 for 1 ≤ i ≤ N - 1.  

Any canon may be brought to the normal form. 
 
Proposition 6.12. Let C be a canon in the normal form (6.1), 

let σ be the successor map on Out(R, C) and let sC  be the map 
on C constructed from σ. Then: 

 
sC(ti + R) = ti+1 + R for 1 ≤ i ≤ N – 1, sC(tN + R) = t1 + R. 

 
Proof: let RO = Out(R, C). It is easy to establish the equality 

RO ∩ [0, Per(R)) = {t1, …, tN}. 
Because of that relation we have σ(ti) = ti+1 for 1 ≤ i ≤ N – 1, 

hence sC(ti + R) = σ(ti) + R = ti+1 + R. 
We prove that σ(tN) = Per(R) + t1. Indeed, Per(R) + t1 ∈ RO 

since t1 ∈ RO and Per(R) stabilizes RO. Also, tN < Per(R) ≤ Per(R) 
+ t1. It remains to prove that no element of RO exists in the 
interval (tN, Per(R) + t1). If such an element t existed, it must be 
no less that Per(R) because otherwise tN would not be the greatest 
element of RO in the interval [0, Per(R)). But then t – Per(R) 
would be an element of RO in the interval [0, t1) and so t1 would 
not be the least element of RO in the interval [0, Per(R)).  

In conclusion sC(tN + R) = σ(tN) + R = t1 + Per(R) + R = t1 + R.  
 
The procedure for computing the category presented in the 

example below is justified by Propositions 6.10 and 6.12. 
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Consider a canon as in (6.1) but without the constraints of 
the normal form. 

 
C = {R, 3 + R, 7 + R, 9 + R, 12 + R, 13 + R, 15 + R, 19 + R, 24 
+ R } with Per(R) = 18. 

 
Bring C to the normal form. To this purpose first replace 

each ti by the uniquely determined si ∈ [0, Per(R)) such that si – 
ti is a multiple of Per(R). 

 
C = {R, 3 + R, 7 + R, 9 + R, 12 + R, 13 + R, 15 + R, 1 + R, 6 + R } 

 
Then arrange the si’s in increasing order.  
 

C = {R, 1 + R,  3 + R, 6 + R, 7 + R, 9 + R, 12 + R, 13 + R, 15 + R} 
 
Write the si’s in a row and add the element s1 + Per(R) at the 

right end of the sequence. 
 

0, 1, 3, 6, 7, 9, 12, 13, 15, 18 
 
Form the differences of successive elements. 
 

1, 2, 3, 1, 2, 3, 1, 2, 3 
 
Permute circularly one step at a time. The number of steps 

that take back to the start sequence is the category. 
 

k = 0 (1, 2, 3, 1, 2, 3, 1, 2, 3) 
k = 1 (2, 3, 1, 2, 3, 1, 2, 3, 1) 
k = 2 (3, 1, 2, 3, 1, 2, 3, 1, 2) 
k = 3 (1, 2, 3, 1, 2, 3, 1, 2, 3) 

 
The category of C is 3. 
 
 

Partitions of a canon 
Definition 7.1. Two canons C1 and C2 are called equivalent 

if they belong to the same orbit of the action of ℚ, that is, if there 
is t ∈ ℚ such that t + C1 = C2. 

 
Proposition 7.2. Equivalent canons have equal inner 

classes, equal outer classes and equal resultants classes. 
Proof: let C1 and C2 be canons such that t + C1 = C2. By 

Proposition 3.2 ii) we have Out(R, C2) = Out(R, t + C1) = t + 
Out(R, C1) for any rhythm R, therefore the outer rhythms Out(R, 
C1) and Out(R, C2) are equivalent.  

From the definition one checks that Res(C2) = Res(t + C1) 
= t + Res(C1), therefore the resultant rhythms are equivalent. 
Since a canon is a finite collection C of equivalent periodic 
rhythms, it follows that every subset of C is itself a canon, that 
will be called a subcanon of C. 

 
Definition 7.3. A partition of a canon C is a collection of 

mutually disjoint subcanons whose union equals C. In other 
words, a partition of C is a collection {Ci | 1 ≤ i ≤ M} such that 
Ci ∩ Cj = ∅ for i ≠ j and  

A partition of a canon C into equivalent subcanons is a 
partition formed of subcanons that are mutually equivalent as 
canons. 

Proposition 7.4. Let {Ci | 1 ≤ i ≤ M} be a partition of C into 
equivalent subcanons. Then the collection                                   

                                                                                              
{Res(Ci) | 1 ≤ i ≤ M}                                                           (7.1) 
 
is a canon.                                                                                   
       

Proof: by Proposition 7.2 all rhythms in (7.1) are equivalent.  
 
Proposition 7.5. For any partition of a regular 

complementary canon into equivalent subcanons, the canon 
constructed as in (7.1) is regular complementary. 

Proof: it follows immediately from definitions.  
 
Proposition 7.6. For every partition {Ci | 1 ≤ i ≤ M} of C 

into equivalent subcanons the following are true. 
 

O(Ci) ⊂ O(C) for 1 ≤ i ≤ M. 
 
If C has maximal category then all Ci have maximal 

category. 
Proof: i) let s ∈ O(Ci), meaning that s + Ci = Ci. Any other 

Cj is equivalent to Ci, so there is t ∈ ℚ such that Cj = t + Ci. It 
follows that s + Cj = s + (t + Ci) = t + (s + Ci) = t + Ci = Cj. We 
have thus proved that s ∈ O(Cj) for 1 ≤ j ≤ M. Given any 
rhythm R in C, by the definition of a partition there is j such 
that R ∈ Cj. But then s + R ∈ Cj ⊂ C. We have thus proved 
that s + R ∈ C whenever R ∈ C, meaning that s ∈ O(C). As s 
was arbitrary in O(Ci), we have proved that O(Ci) ⊂ O(C). ii) 
When C has maximal category we have O(C) = I(C) by 
Proposition 4.3. iii). Then by i) I(C) = I(Ci) ⊂ O(Ci) ⊂ O(C) = 
I(C), therefore O(Ci) = I(Ci) and Ci has maximal category again 
by Proposition 4.3 iii).  

 
 

Partitions into subcanons of minimal  
category 

Let G be any subgroup of O(C). Since by definition t + R ∈ 
C for any t ∈ O(C) and R ∈ C and since G ⊂ O(C), we have an 
action of G on C that defines a partition of C into orbits. Let D 
be any such orbit. Since G stabilizes D by the definition of an 
orbit it follows that G ⊂ O(D). Also, by the definition of an orbit 
G acts transitively on D and therefore O(D) also acts transitively 
on D. By Proposition 4.3 ii), this implies that D has minimal 
category. 

 
Proposition 8.1. The decomposition into orbits of the canon 

C defined by the action of a subgroup of O(C) is a partition into 
equivalent subcanons of minimal category. 

Proof: we have already seen that the orbits are subcanons 
of minimal category. Being orbits, they form of course a 
partition of C. It is left to show that these subcanons are 
equivalent. Let D1 and D2 be two orbits. Pick rhythms R1 ∈ D1 
and R2 ∈ D2. Since R1 and R2 belong to C they must be 
equivalent, hence t + R1 = R2 for some t ∈ ℚ. Then by the 
definition of an orbit 

 
D2 = {g + R2 | g ∈ G} = {g + (t + R1) | g ∈ G} = {t + (g + R1) | 
g ∈ G} = t + {g + R1 | g ∈ G} = t + D1. 
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Partitions into essential subcanons 
Definition 9.1. The minimal decomposition of a canon C is 

the partition into orbits obtained by taking G = O(C) in the 
construction from the preceding section. 

 
Definition 9.2. An essential subcanon of the canon C is a 

subcanon that has in common one and only one rhythm with 
every orbit of the minimal decomposition. 

By acting with O(C) on an essential subcanon we retrieve 
the original canon C. In addition, an essential canon is minimal 
with this property: by deleting a single rhythm from the 
subcanon it will be no longer possible to retrieve the whole 
canon by using the action of O(C) only. 

 
Proposition 9.3. For every essential subcanon D of C the 

following are true. 
For every s ∈ O(C), s + D is an essential subcanon.  
For every s1, s2 ∈ O(C) the subcanons s1 + D and s2 + D are 

either disjoint or equal, the latter situation occurring iff s1 – s2 
∈ I(C). 

Proof: i) for any R ∈ C the orbit of –s + R has an element 
in common with D, so there is t ∈ O(C) such that t – s + R ∈ D. 
It follows that t + R ∈ s + D showing that the orbit of R has the 
element t + R in common with s + D. Therefore, any orbit of C 
has at least one element in common with s + D. Suppose now 
that R1 and R2 in D are such that s + R1 and s + R2 belong to the 
same orbit. Hence there is t ∈ O(C) such that t + (s + R1) = s + 
R2. But then t + R1 = R2 meaning that R1 and R2 belong to the 
same orbit, so they must coincide by the definition of D. Hence 
s + D has at most one element in common with each orbit. ii) 
Let s1, s2 ∈ O(C) be such that the subcanons s1 + D and s2 + D 
are not disjoint. Then there are R1, R2 ∈ D such that s1 + R1 = s2 
+ R2. But then R1 and R2 are in the same orbit, hence they must 
coincide as D has in common at most one rhythm with each 
orbit. It follows that s1 + R1 = s2 + R1 which implies that s1 – s2 
∈ I(C) and consequently s1 + D = s2 + D.  

 
We have just proved that the set of essential subcanons of C 

is stable for the action of O(C), so we can consider its 
decomposition into orbits defined by this action.  

Proposition 9.4. Every orbit of the action of O(C) on the set 
of essential subcanons of C is a collection of subcanons that 
form a partition of C into equivalent subcanons. 

Proof: let D be an essential subcanon of C. Since the orbit 
of D is the set of subcanons of the form s + D with s ∈ O(C), it 
is clear that all these subcanons are equivalent. By Proposition 
9.3 ii) all these subcanons are mutually disjoint. It is left to show 
that their union equals C. Let R be any rhythm in C. Since D 
intersects every orbit of the action of O(C) on C, there is s ∈ 
O(C) such that –s + R ∈ D. But then R ∈ s + D which proves 
the assertion.  

 
Proposition 9.5. Every essential subcanon has maximal 

category. 

Proof: let D be an essential subcanon of C and let s ∈ O(D) 
be given. By the definition of O(D) we have s + D = D. By 
Proposition 7.6 i) we must also have s ∈ O(C). But then by 
Proposition 9.3 ii), the equality s + D = D can occur only if s ∈ 
I(C) = I(D). We have thus shown that O(D) ⊂ I(D) which proves 
the maximal category.  

A very simple example will help clarifying the above 
concepts. 

Let R be any rhythm of period 8. Consider the canon  
 

C = {R, 1 + R, 4 + R, 5 + R}. 
 

We have I(C) = 8ℤ, O(C) = 4ℤ and the category of C equals 2. 
In the following we shall write t as a shorthand for t + R. 

With this shortened notation the original canon is written 
 

C = {0, 1, 4, 5}. 
 
Below we give the minimal decomposition (first line) and 

the list of essential subcanons (second and third lines), with 
equivalent subcanons placed on the same line. 

 
C = {0, 4] ∪{1, 5} 
{0, 1} {4, 5} 
{0, 5} {1, 4} 
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