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Our motto in this paper is:  
“Let’s stop looking and start observing!” 

Introduction 
It is commonplace to argue that education plays the most im-

portant role in helping us improve ourselves, gain a clear under-
standing of the world around us, find our place in society and fully 
realize our potential to achieve personal fulfilment and satisfac-
tion. What is not so “commonplace” is how to proceed in making 
sure these goals are achieved! 

Let us start by agreeing, first, on what we mean by education: 
As is well-known, the ancient Greek word for this endeavor, 
“Παιδεία”, comes from the word “παιδεύω”, which is derived 
from “παις” (child). This refers to the act that Plato considered so 
essential for his ideal Politeia, as to propose that all children 
should be educated, independently of the influence of their par-
ents’ experiences and upbringing, to become effective citizens, 
able to undertake all responsibilities derived from fully partici-
pating in their civic duties.  

Let us next state what I believe we all agree on: education is 
NOT the accumulation of information and the mindless storage 
of data, tucked away somewhere in our brain, so that it may 
“downloaded” upon demand. I am also confident we agree that 
Education must contain the elements of understanding the con-
nections between different information items, no matter how dis-
parate they may appear, so that we may perhaps be able to connect 
them in different ways and arrive at entirely different constructs 
from the ones we started with. Of all animals, this is an ability 
that only humans possess. 

In so doing, we “educate” ourselves how to use the full realm 
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of our mental and physical abilities to fully realize our potential 
and climb to peaks that we thought were previously unattainable. 
Thus, we will be able to understand what the young child, in 
Kazantzakis’ book “Report to Greco”, felt, when in response to 
his promise “I will reach as high as I can!” his grandfather replied, 
“No, I want you to reach where you cannot!” 

So, we all know what education means. But do we practice 
it? This is where matters become difficult, as a major role is played 
by the education systems of our countries. In section “The Greek 
situation”, I will speak about the situation in Greece, as it is my 
country, where I have taught at universities for more than 30 years, 
and, therefore, know best and care about deeply. 

In section “The science of complexity”, I will come to the 
central theme of this paper and outline how I believe the new sci-
ence of complexity (Nicolis and Nicolis, 2007) can help us all, ir-
respective of our different education systems: i) rejuvenate our 
students’ interest in all sciences, ii) make them appreciate the con-
nections between science and the arts, and iii) induce them to think 
independently, ask questions and ultimately realize their own po-
tential as future citizens in society. 

In the following sections, I will discuss some of the won-
derful new knowledge that complexity has offered us, its mar-
velous discoveries, and suggest innovative ways by which we 
can teach it to our youths. Thereafter, I will speak about connec-
tions of complexity and the arts, through the eyes of mathemat-
ics and physics and finally, the last section, I will offer some 
conclusions and suggest ways that I feel will be useful to edu-
cators, who would like to implement in their work ideas similar 
to my own. 

The Greek situation  
Let me start, for concreteness, by identifying different stages 

of our education system in Greece by 5 Cycles (Figure 1): Cycle 
1 is Elementary Education, Cycle 2 is Gymnasium, Cycle 3 is 
Lyceum (or Lykeion), Cycle 4 is University and Cycle 5 is Grad-
uate Studies. Now imagine these Cycles connected by “links”, 
which pertain to how “effective” is the passage from one Cycle 
to the next. What does this mean? Clearly, I refer to how 
“smoothly” students pass from one Cycle to the next, having di-

gested what they learned in the former and being able to easily 
follow the latter, without major “surprises”. 

First the good news: In Greece, the link from Cycle 1 to 2 is 
well bonded. From Cycle 2 to 3, students “think” they understand 
matters, as there are no surprises, but still have only a general idea 
what they want to do in life and no clue as to what happens when 
they finish Cycle 3. They are generally quite influenced by what 
their parents and friends suggest, without seriously posing the 
questions: “What do I really want to do in my life?” “If science 
doesn’t inspire me and have no obvious special talents, how can 
I best contribute to the betterment of myself and those around 
me?” “Should I become a very good technician, or could I perhaps 
work to expand my family’s property, enterprise or traditions?” 

I will now jump to the “link” between Cycles 4 and 5 and 
share with you the good news that matters are rather smooth here 
also, allowing for a “natural” transition. This is the “link” where 
I have devoted a great part of my life, with, allow me to say, rea-
sonable success. But I prefer to further elaborate on this when I 
discuss my conclusions. 

And thus, we arrive at the “weakest link”, between Cycles 3 
and 4, where the real problems in Greece arise. Here, there is no 
question of smoothness, but a case of disaster of great proportions, 
not only regarding the students’ misorientation and their families’ 
misfortunes, but also to the detriment of the wider Greek society. 

To understand this modern Greek tragedy, one must take a 
close look at our National Education system, and how it was 
chiefly affected by a law passed soon after the elections of 1981, 
when Andreas Papandreou’s PASOK party came to power. Al-
though this law alleviated previous undemocratic practices of Pro-
fessors identified with Chairs that did not allow the progress of 
younger faculty without the Professors’ approval, it also contained 
some serious flaws, which soon became evident. 

First of all, it kept all universities chained to a central National 
Educational System, whereby no university is allowed to form its 
own policies and determine the students it would accept in each 
of its departments. Everything was centrally organized, so that 
students have to pass National Examinations, stating their choices 
(mostly according to their parents’ residence) so that admission 
grades became higher the more populated the city where each uni-
versity is located. 

But still, the worst was still to come. As the Entrance Exams 
became each year more elaborate, demanding students to answer 
more intricate and tedious questions, it became evident that what 
they learned in Cycle 3 was simply inadequate. Thus, a highly 
parasitic system of private institutions was formed, promising to 
teach the contestants exactly those intricate and tedious details 
needed to pass the Entrance Exams.  

You can easily imagine what happened next: Lyceum educa-
tion (itself strictly observing the Ministry’s rules) became redun-
dant, as it was less and less relevant to the students, in favor of 
the “recipes” they were memorizing at the private institutions. 
And so, all the beauty and appeal of Lyceum teaching subsided, 
compared with the utilitarian approach that what was important 
was what students “learned” privately, at the great expense of their 
parents, in whose eyes Lyceum education was also discredited.   

“So what?” one might ask, as long as the students succeed 
in entering the Higher Educational and Technical Institutes clos-
est to their choice and Exam grades. But, alas, this is not what 
happened. Forced, for several years, to recite what the private 
institutes “taught’ them, the students forgot how to think inde-
pendently, ask questions, and focus on what they enjoyed. In-
stead, they began to adopt a mechanistic way of parroting facts, 
which they immediately forgot when they entered Higher Edu-
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Figure 1. The 5 cycles of the Greek National Education system 
(author’s design).
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cation, so exhausted from this “training”, that it often takes them 
2-3 years to recover and start passing courses successfully! 

And the “icing on the cake”: In testimony to the harmful ef-
fects of the private institutes, recent data painfully show that the 
students’ performance at the Entrance Exams has recently de-
graded so much that many University Departments have had to 
lower significantly the grades by which they will admit students, 
from say 60-70% to 40-50%, afraid to lose the student “clien-
tele” assigned to them annually by the Ministry! Whatever you 
may wish to call this, it is certainly not education.  

The science of complexity  
As we all know, over the last 120 years, science has pro-

gressed with such great strides, as to have reached to date heights 
previously thought unattainable. From our understanding of the 
structure of elementary particles and the unification of quantum, 
electromagnetic, weak and strong interactions to the cure of life-
threatening diseases and the complete deciphering of the human 
genome. We have also begun to understand how our brains func-
tion to the extent that we can now help invalids perform me-
chanical motions by electronically exciting the right area of their 
brain. We have also made progress in the direction of treating 
such dangerous ailments as epilepsy, schizophrenia, Alzheimer’s 
and Parkinson’s disease.

On the other hand, even though we have completely verified 
quantum physics and Einstein’s theory of gravity revealing how 
our universe has developed since the Big Bang over the last 13.8 
billion years, we still understand only about 5% of its con-
stituents, as the remaining 95%, comprising what scientists call 
Dark Matter and Dark Energy, remain a mystery. Thus, as the 
great American scientist David Gross (Nobel Prize in Physics, 
2004) recently said, “we may be proud of what we have discov-
ered so far but let us not forget that our knowledge is finite, 
while what we don’t know may indeed be infinite!”  

So, the crucial question for Educators around the globe 
today is: how can we use all these remarkable discoveries to 
stimulate our students’ interest, excite their imagination and in-

fuse them with the desire to pursue themselves some of these 
incredibly attractive avenues of research or participate actively 
in their unnumerable applications? 

This is where the science of complexity comes in (Nicolis 
and Nicolis, 2007): Complexity teaches us first of all, that living 
systems around us obey the very important rule “the whole is 
more than the sum of its parts”, realizing group actions in ways 
that are impossible to explain by reducing our study to the analy-
sis of their individual components. In other words, we may know 
everything about a single bird or fish, but this knowledge will 
never allow us to explain the incredible shapes the former make 
in the sky or understand the group changes of the latter in the 
sea (Figure 2). 

You guessed it: if these strangely complex and beautiful 
group behaviours cannot be deciphered by knowing everything 
about their individual components, how can we hope to under-
stand how our brains function, if we only understand the elec-
tromagnetic processes within each neuron and how they interact 
with each other? (Figure 3). 

Remarkably, complexity science has an answer: instead of 
only focusing on individual entities, why don’t we begin to study 
multi-node networks of them, endowed by arbitrary connectivity 
properties, and vary the “strengths” assigned to the links be-
tween each pair of nodes? Could we then hope that, by judi-
ciously modifying these parameters, we may end up with a 
variety of complex networks that could exhibit a wide spectrum 
of unexpected group behaviors similar to what we observe in 
brain imaging? 

You guessed it again: The answer is yes! Over the last 20 
years, complexity has given rise to a new field called Network 
Science (Barrat and Vespignani, 2008, Latora et al., 2017). Its 
remarkable discoveries have revolutionized not only the way we 
study brain dynamics, identify diseases and model epidemic 
spreading (Loscalzo et al., 2017), but have also taught us how 
to comprehend social interactions (Vega-Redondo, 2013) and 
even optimize the performance of traffic networks (Chen et al., 
2012). 

Isn’t this amazing? And isn’t it about time we learned about 
it and began to teach it to our students? Wait a minute! You will 
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Figure 2. Bird formations (left) and fish “school” movements (right) cannot be explained by our biological and mechanical understanding 
of each bird or fish individually (photos publicly available).
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protest. This material is too advanced and will require the knowl-
edge of higher mathematics and computation, right? Wrong. Let 
me illustrate this with a simple example: 

Let us take a large, say 100x100 square cells and mark each 
cell by anyone of 2 states: Red (R) or Black (B), (live or dead, 
whence the name Game of Life). Every cell interacts with its 
eight neighbors, which are the nearest cells horizontally, verti-
cally, or diagonally to it. Now assign R and B randomly to all 
your cells and renew their colors successively by following a 
simple deterministic rule; at each step: i) any live cell with two 
or three live neighbors survives as R to the next generation (sup-
ported by its neighbours), ii) any live cell with fewer than two 
live neighbours dies and turns to B (say due to underpopulation), 
iii) any dead cell (B) with exactly three live neighbors becomes 
a live R cell (say due to reproduction), and iv) any live cell with 
more than three live neighbors dies, as if by overpopulation. This 
game was invented by the great mathematician John Conway in 
1968! 

Now continue to apply repeatedly the above deterministic 
rule to the new set of R and B cells and ask yourself what will 
happen in successive generations. Will the R cells finally dom-
inate and “life” in this population will prevail, or will the B ones 
multiply to the extent that everyone “dies” in the end? Are there 
only fixed “states” as the game progresses, where the R and B 
cells oscillate in number? What do you think? 

I will not tell you the answer, not because I don’t want to 
spoil the story, but because… there is no single answer! The se-
cret lies in your choices of the initial distribution of states! De-
pending on how you start, in general, you get a different answer! 
Now do you see what exciting developments we get when we 
mix a random process (initial choice of colors) with a purely de-
terministic one (evolution of the game)? 

And thus, we come to what you have all heard as determin-
istic chaos or chaos theory, and of course the formation of fractal 
shapes also occurring through deterministic dynamical 

processes. Here allow me please to give only references to my 
books (since this paper is also addressed to many Greek educa-
tors), where all the theory is explained, as simply as possible, 
with many examples, since I have been teaching this subject 
since 1986 in Greek universities (Bountis, 1975, 1977, 2004; 
Bountis et al., 2017; Bountis and Mihailidis, 2019). In the bib-
liography of these references, you will find many of the well-
known relevant books and articles that have appeared in the 
international literature.  

So, let us now return to the main topic of this paper: what is 
complexity science? And, more importantly, what new concepts 
and principles does it offer, and how can we teach them to our 
high school students, to re-energize their interest in all sciences 
and arts, and help smoothen their passage through the “weak 
link” between Cycle 3 and Cycle 4 of their education? 

How do we motivate students to learn            
about complexity science? 

Let us begin with a simple-looking question: how do we ex-
plain the famous Zeno’s paradox (of nearly 3000 years ago) that 
an arrow will never reach its target, since it will have to contin-
uously halve its distance from the target? I suppose you know 
that the complete answer was actually given about 500 years ago 
when calculus and the theory of limits were formulated. But did 
you know that we can actually present this theory to our students 
using one or more …pizzas? 

To clear the way, we first need to explain to the students that 
the there is a “confusion” in the paradox between the concepts 
of time and space (in fact, the theory of motion puzzled Ancient 
Greek philosophers for many centuries). The starting point here 
is that we should replace distances with time intervals. The par-
adox of “never reaching the target”, after all, is related to a sum-
mation of time increments, which may be infinite in number but 
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Figure 3. Considering the brain as a collection of “families’ or subnetworks of neurons, we can model their activity on planar models con-
sisting of such families of nodes, excited by outside oscillatory currents I(t) which can be analyzed into their Fourier components An(t) (au-
thor’s design).
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each of them is reduced by a scale r=½. Thus, what we really 
want to find is how to compute the sum: 

                                                                 
(1)

assuming that the arrow travels first half the distance to the tar-
get in half a second (supposing its speed is equal to v=1 m/sec, 
but you can change v to any constant you wish). Thus, the next 
half-distance is travelled in 1/4 sec, the next one in 1/8 sec. 
etc., and the question is whether the sum in Eq. (1) is a finite 
or infinite number. 

Let us forget about summing numbers and think about… 
eating half a pizza, then a quarter of the pizza, then an eighth of 
it, etc. Will this process of eating decreasing slices lead us to eat 
a 2nd pizza, then a 3rd, etc., all the way to infinitely many pizzas? 
Let’s find out by a simple drawing in Figure 4. 

Now I ask you: Is there any child above the age of 10 that 
cannot understand this? As I halve the slices continuously, add 
to the previous ones and keep doing this indefinitely, since the 
blank space (where the dots are) is always twice what I add, I 
will approach the top of the pizza in a continuous way and never 
surpass it! As the well – known Greek proverb says “ask a child 
or a madman to find out the truth!” (later in the Lyceum students 
learn that all this comes from a formula for geometric series but 
by that time it is too late). 

Now that the children (and I hope you too) are getting inter-
ested, let us come to a more difficult question: suppose I come 
across a hungry child, whose appetite decreases more slowly, so 
that after half a pizza he (or she) eats 1/3, then 1/4, then 1/5 of 
pizza, etc. What will happen? Again, as any child (who knows 
about fractions) can verify 1/2+1/3+1/4 =26/24 and this means 
we need a piece 1/12 of a second pizza! 

Let’ keep adding: 1/12 (of the new pizza) + 1/5 +1/6 +…
.+1/11 =1.02 approximately and we have finished the second 
pizza! Our friend continues to eat since, after all, the slices are 
getting smaller, and the bets begin! The shop owner promises a 
free 3rd pizza if we ever reach that point, whence, our young lad 
finds that this happens when he/she reaches the 1/29 slice. Now 

the stakes get higher, and a curious observer agrees to give our 
friend one euro for every new pizza he has to eat or get double 
his money back when we reach the last pizza. Do you think the 
child should accept the bet?  

Well, our youngster is smart enough (like most children at 
that age) to use a calculator and try by a simple iteration algo-
rithm to add up an increasing number of terms, with n=30, 50, 
100, 1000…, in this so-called harmonic sum: 

                                               
(2)

only to find out that S(n) continues to grow and exceeds any of 
the low integers of 4, 5,..,10,… or more pizzas! As we watch the 
numbers grow, we keep being fooled into thinking that S(n) 
tends to converge to some limit, only to find out every time that, 
after more iterations, whatever number we think of is eventually 
surpassed! But can we claim that we won the bet? Of course not! 
Our observing friend can always claim that had we summed 
more terms we could have reached a finite number. 

I know of no better way to introduce a young student to the 
magic world of infinity, limits, convergent and divergent series, 
than the examples outlined above. In fact, even the concept of 
proof, that torments so many of our Cycle 4 students could well 
be taught here, in Cycle 3! There is a beautiful way to prove that 
the harmonic sum (2) goes to infinity and win the bet: It rests 
upon the well – known method of “reductio ad absurdum” that 
was already by the ancient Greeks and goes like this:   

Let us assume that the sum (2) is finite. Dividing it by 2, 
therefore, yields: 

                                        
(3)

Subtracting now (3) from (2) we clearly find for the other half 
the expression: 

                                                    
(4)
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Figure 4. We can evaluate the infinite sum (Eq. 1) by eating pizza slices with ever decreasing size, which, as is obvious, never surpass a 
single pizza, but tend to eat all of the pizza in the end! (Author’s design).

Non
-co

mmerc
ial

 us
e o

nly



It is also evident, however, comparing term by term the above 
two sums (3) and (4), that: 

                                 

But that is impossible! How can one half be less than the 
other? We have reached an absurdity! The only possible explana-
tion for this must be that our original belief that S is finite is false!  

I am sure you can explain this argument to your students, and 
they will certainly understand it. Thus, you may end your class 
that day by saying: “Do you see now, boys and girls? Here is an 
example of how the human mind can discover what no calculator, 
however powerful, will ever be able to tell you!” 

And a final bit of crucial information: Observe that the geo-
metric sum (1) that gave us a finite answer involves terms which 
are powers of a scale r=1/2, while no such scale relation exists 
among the terms we added in the harmonic sum (2)!  

The important lessons of self-similarity under 
scaling 

I believe we can all agree that any new principle discovered 
is not important enough unless it can tell us something new about 
the world we live in. So, what can we say about the importance 
of this “scaling law” we encountered in the previous section? How 
can use the idea of scaling to understand something about nature?  

To find out, we must first observe nature! Have you ever no-
ticed something peculiar in the branching structure of a tree and 
the equivalent way the “capillary tubes” in every leaf divide them-
selves to provide water to the whole leaf (Figure 5)? 

What is happening here? Observe first in the left picture that 
big branches “bifurcate” into two (or more) subbranches, which 
are significantly smaller in length (and width) from the “mother” 
branch. Now note a similar situation occurring as the leaf “tubes” 

“bifurcate” into thinner ones (right picture). The more observant 
among you will also notice that the distances at which the main 
leaf “tube” bifurcates in the second (smaller size) family are nearly 
equal, while the smaller distances, at which the bifurcations of the 
second ones also occur at similar nearly equal but smaller dis-
tances to give rise to the next “generation”. Why do you think that 
is? Are there relative scales within the lengths and widths of these 
generations? 

Let us try to answer the first question by drawing our own 
tree, taking a vertical length, calling it a, and repeatedly bifurcate 
from it two new branches at 45o angles in an upward direction 
with lengths a/2, then a/4, etc., always at a scale r=1/2 smaller 
from one generation to the next (Figure 6, left panel). What do 
you observe? Even though we may repeat this process as many 
times as possible (practically infinitely many) the height of the 
tree will finally converge to a finite (relatively small) size! Could 
mother nature be employing such a scaling law for reasons of 
economy? You must admit it looks quite plausible. 

Now let us turn to the leaf (Figure 5, right panel). Could the 
observed bifurcations between smaller and smaller “tubes”, by 
some choice of scales, be what enables the nutrients to reach the 
furthest ends of the leaf, much like the arteries and veins in our 
bodies bifurcate to carry blood to the furthest extremities of our 
bodies?  

Thus, according to our motto: “we have stopped looking and 
started observing!” And now nothing can stop us. Let us follow 
Barnsley’s approach (Barnsley, 1993) and begin with any shape 
(square, circle, etc.), which will be taken thin and set up “upright”. 
Next, we draw (Figure 6b) a second large copy of the initial shape 
above the thin one, tilted by a small angle to the right. Next, we 
draw a third smaller copy, tilted slightly to the left of the large one 
and a final thin parallelogram below all of them! 

Now, let us iterate this process, using, over and over, the same 
simple geometric transformations that led us to the four initial 
copies of the original shape. The result is no less than a miracle! 
No matter what the initial shape, after many hundreds of itera-
tions, we will always end up with the picture of the fern leaf 
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Figure 5. Note how smaller tree branches “bifurcate” from bigger ones (left) and how the “capillary tubes” divide as they carry nutrients
to the ends of every leaf (right) (author’s photos).
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shown in Figure 6c! Isn’t it amazing? What takes nature some 
months to create, we can reproduce it here in a few minutes of 
computation time! 

This is a realistic application of the law of self-similarity under 
scaling, which complexity science teaches us. And now we can 
attempt to answer the question: Why does nature follow this law? 
Could it be perhaps that it would be extremely difficult to enclose 
so much information as pictured in Figure 6c in the small seed of 
a fern bush? Wouldn’t it be a lot more economical to somehow 
“enclose” in the seed an “algorithm” of specific instructions how 
to create such a complex design? 

Fascinating discoveries of complexity science  
Thus, as we have finally begun to understand better the term 

“complexity”, we may now become bolder and start looking for 
more important and useful applications of complexity science. 

Shall we begin by taking a closer view at how our heart functions? 
At first sight, we notice that our heart behaves like a clock, 

which is quite similar to what the theory of dynamical systems 
calls a “limit cycle” (Bountis, 1997; Anastassiou and Bountis, 
2019). As we know, this cardiac “clock” can increase its beating 
frequency (heart rate, HR) when we do strenuous physical exer-
cise and reduce it when we are asleep. Under normal conditions, 
HR is quite steady at about 70-80 beats per min (Figure 7a). 

Notice now that, besides the periodic polarization - depolar-
ization “spikes” recorded by the EEG, there also appear aperiodic 
smaller “spikes” occurring chaotically at some of the electrodes. 
On the other hand, in the ECG of Figure 7), one notices more pro-
nounced evidence of order and periodicity in the ECG signals. 
Unfortunately, in many cases, this type of “periodic” signals is as-
sociated with the case of ventricular tachycardia!  

This demonstrates that nature prefers to endow the function-
ing of healthy organisms with a small degree of aperiodicity and 
chaos. Perhaps, in this way, a living organism becomes more 
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Figure 6. a) Construction of a mathematical tree by repeated decreasing of its “trunk” S by 1/2 and rotating by 45o to the right and 45o to 
the left (b) Employing repeated contracting transformations as those that relate the parallelogram marked with L at the top of (b) to the 
scaled copies 1, 2, 3 and 4 (a little stem below the others), we can imitate mother nature by creating a “realistic” fern in (c) (Bountis, 2004).

Figure 7. a) HR signal in the ECG of a healthy person under normal conditions. b) ECG of a patient suffering from ventricular tachycardia.
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“flexible” to “absorb” small “dosages” of irregular disturbances 
and thus adapt more easily to the surroundings without suffering 
undesirable effects. 

This is also true of the brain! In fact, when studying the onset 
of frontal lobe epileptic crises, researchers have found that 10-15 
min before the crisis occurs, the brain’s chaotic behavior is sig-
nificantly reduced (Iasemidis, 2003; Iasemidis et al., 2005), while 
immediately after the crisis, the electro-encephalo-graphic (EEG) 
signals show a remarkably periodic behavior (Figure 8). Thus, 
this discovery can be used, through a portable mechanism carried 
by the epileptic, to predict the onset of the next crisis, so that 
he/she can be warned and take the necessary precautions.  

Now, we know that the brain works as a huge Neural Network 
(NN), consisting of many subnetworks, each responsible for a spe-
cific function (observation, motor, sound, language, etc.), which 
must “communicate” with each other to perform our daily tasks 
(Figure 3). Since neurons emit electromagnetic oscillatory signals, 
this communication takes place through the synchronization of 

these signals. This means that when there is synchrony the neu-
rons of the communicating subnetworks oscillate synchronously, 
while when they don’t, they exhibit asynchronous behavior 
(Haken, 2002; Salari and Maye, 2008). 

So, let’s take a look at Figure 8. Do you notice a weak type of 
synchronization in the left part of this EEG, where all the signals 
of the corresponding electrodes oscillate out of synchrony with a 
low level of “aperiodicity” or “chaos”? Good. Now observe what 
happens at the time where this activity ceases (designated by 
“STOPS”). This is where the epileptic crisis starts and lasts for 
several minutes until the previous state of weak synchronization 
and chaos is restored (designated by “RESUMES”)! One cannot 
help but conclude, therefore, that synchronization is not always a 
healthy sign, while a healthy person’s EEG must necessarily con-
tain a low level of chaos.  

Scientists were baffled for a long time about the fact that 
many mammals (including dolphins and seals) as well as many 
kinds of birds, often sleep with one eye open and one closed. 
This means, of course, that one hemisphere of their brain (cor-
responding to the open eye) is “synchronized”, while the other 
one is “asynchronous”. But how is that possible? Since the two 
hemispheres are connected through the neuron fibers of the cor-
pus callosum? 

As you know, scientists are never convinced they have under-
stood something, unless they first build a mathematical model for 
it. So, a great wave of enthusiasm was generated when a paper 
appeared in the 2002 literature (Kuramoto and Battogtoch, 2002) 
establishing in a convincing way that such mathematical models 
of this behavior do exist. This was followed by a great number of 
papers, in which the name of “chimera state” was given for this a 
coexistence of synchronous and asynchronous oscillators (recall 
that chimera was a mythological beast made up by the combina-
tion of a lion, a goat and a snake; Figure 9). 

To date great progress has been made in this direction, 
whereby hundreds of fascinating chimera states were discovered 
and verified in chemical and mechanical experiments. Of course, 
the most exciting prospect was to understand the brain, there-
fore, a great many discoveries followed studying more and more 
complex models of neuron networks demonstrating that such a 
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Figure 8. EEG of a patient suffering from frontal lobe epilepsy. 
The crisis starts at the point where regular function ceases 
(“STOPS”) and normal function begins again at “RESUMES” 
(see Iasemidis, 2003; Iasemidis et al., 2005).

Figure 9. Left: some mammals and birds sleep with one eye closed and one open. Right: this combination of synchronous and asynchronous 
behaviour was termed “chimera state” after the famous mythological beast bearing that name (pictures available on the internet).
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prospect is indeed realizable (see “3 Human Chimeras Already 
Exist”, Scientific American, August 8, 2016, at: https://www.sci-
entificamerican.com/article/3-human-chimeras-that-already-
exist/). Here I will only mention a paper produced by our group 
at the University of Patras (Hizanidis et al., 2014), which has 
already received a significant number of citations in interna-
tional literature. 

From this paper, I reproduce here in Figure 10 one represen-
tative picture, showing on the left a column of snapshots of os-
cillatory states at different coupling parameters σ=0.005…, 1.0, 
where, at σ=0.005, 0.17 the asynchronous and synchronous neu-
rons are homogeneously distributed, while at σ=0.02 and 1.0 all 
neurons are oscillating up and down in synchrony. A true 
chimera state is found at σ=0.47, where the different states are 
clearly separated. 

Now let’s become bolder and discuss something more ad-
vanced. In studying realistic mathematical models of neuron net-
works on the full set of 277 neurons of the simple C. elegans 
organism, we discovered that it was “naturally” divided into 6 
distinct subnetwork communities (Antonopoulos et al., 2016), 
which often oscillated between synchronous and asynchronous 
behaviors. 

To quantify the level of “cooperation” between these 6 neu-
ronal communities, we employed (in Antonopoulos et al., 2016, 
see Figures 1 and 2 in that publication) a statistical quantity called 
ΦAR (Massimini and Tononi, 2018), which measures the collective 
“response” between 6 the communities. If the value of ΦAR is 
larger than the sum of the individual Φj of the j =1, 2,…,6 com-
munities, we might conclude that the organism experiences a type 
of consciousness! 

We found that this indeed happens when our parameters are 
chosen within the red and yellow regions, i.e., exactly at parameter 
values where the 6 communities are more strongly synchronized! 
Thus, we may conclude that synchronization is indeed an impor-
tant phenomenon in these neuronal network models, and, more-
over, it is precisely in synchronized domains of these models that 
we find evidence of “consciousness”. What is needed presently 
is to perform actual experiments, for example through monkey 
brain studies, where these mathematical results are now beginning 
to be qualitatively verified (Hahn et al., 2021). 

Complexity and the arts (is complexity  
beautiful?) 

Who has not, at some time in one’s life, looked up at a star-
filled sky on a clear night and not marveled at the beautifully com-
plex constellations, the distant stars of Sirius, Cassiopeia, Ursa 
Major and Minor or the planets of Mars and Venus and not 
thought of them as “beautiful”? And haven’t we all heard from 
some visitors expressions of awe, while walking through the com-
plicated arrangements of stalactites and stalagmites in a cave? 

Even more so, when admiring the formations of birds in the 
sky flying over a dense forest landscape, or looking at the foliage 
of trees in a forest, why are so many of us fascinated by their 
“beauty”? I would understand finding all these sights “mar-
velously complex”, but why “beautiful”? Does complexity have 
some aesthetic merits that we don’t consciously realize? 

To answer this question, it might be wise to look at the 
works of great artists, painters and sculptors for example, or lis-
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Figure 10. A picture from Hizanidis et al. (Int. J. Bifurc. Chaos 2014;24:1450030; with permission), showing different states on the left, 
only one of which shows a chimera state at σ=0.47 (see text for more details). Note that this state is produced by a specific pattern of high 
frequency “spikes” and low frequency “bursts.”
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ten to the music of famous composers. Aren’t they supposed to 
reveal to us, common mortals, some of the inner beauty of nature 
by pointing out some of the “hidden secrets” of the world we 
live in? 

I am sure you know of several such artists, only, up to now, 
you may not have fully appreciated the “complexity” of their cre-
ations. Perhaps you found them “interesting”, “puzzling”, or “pe-
culiar”, and went on to see other exhibits, or turned the dial to 
hear a different musical piece. However, I am sure you will agree 
with me that the more we know about a work of art, the more we 
understand it and even find inspiring.  

Jackson Pollock (1912-1956) was an American artist, who 
painted large canvasses (like those shown in Figure 11), often 
stretched across the whole floor of his studio, using his famous 
“paint dripping” method (https://www.jackson-pollock.org/), and 
was hailed as one of the greatest painters of last century. In fact, 
he was the first great artist whose work was thoroughly analyzed 
from a complexity point of view by several scientists, who studied 
his paintings in terms of their self–similarity and found evidence 

of fractal properties, even measured their fractal dimension 
(Bountis et al., 2017 for a detailed discussion).  

Following a similar approach, we analyzed (Bountis et al., 
2017) some paintings of trees, by another famous artist of the 20th

century, the Dutch Master Piet Mondrian (1872-1944). In partic-
ular, we chose the two paintings shown in Figure 12 and studied 
mathematically and computationally the fascinating fractal fea-
tures of the trees appearing in them. More specifically, we focused 
on two parts of the trees’ foliages and laid over them a frame of 
smaller and smaller “squares” of sides, say, L1=0.75u, L2=0.5u, 
L3=0.25u, where u is a unit of length, e.g., 1 mm, depending on 
the size of the painting. (Figures 13 and 14). 

For each of these situations, let us denote by N(Ln), n=1, 2, 
3, the number of boxes that contain part of the tree inside them 
by first counting all the empty boxes and subtracting them from 
the total number of squares contained in the big rectangle. Next, 
we solve separately for each painting the following equations:  

N1(0.75u)D=N2(0.5u)D,           N2(0.75u)D=N3(0.25u)D  
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Figure 11. Two paintings, “Autumn Rhythm” (1950, left) and “Convergence” (1952, right) by the great American artist Jackson Pollock 
(1912-1956) (Pictures from the internet).

Figure 12. Two paintings, “The Red Tree” (1910, left) and “Farm Near Duivendrecht” (1912, right) by the Dutch artist Piet Mondrian 
(1872-1944), who lived earlier than Pollock (Pictures from the internet).
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Eliminating from these equations the unit length u (which is 
irrelevant) and taking logarithms of both sides, we would expect 
that the values of D, D1 and D2 say, in the above equations would 
coincide, since they both lead to the same approximate measure 
of the tree M. This, of course, does not happen, since our first ap-
proximations are quite crude. It will be highly interesting, how-
ever, to ask if the following occurs:  

Are the values of D1 and D2 close and lie between 1 and 2? As 
we move from the larger scales to the smaller ones, does the di-
mension converge to a single value D that would thus represent 
the fractal dimension of the tree in that region?  

You guessed it: The answer to both questions is affirmative! 
To establish this convincingly, however, two scales are not 
enough. We need to use an iterative numerical algorithm to con-
tinue the above procedure to smaller and smaller scales that are 
not visible to the eye. When we did this (Bountis et al., 2017) we 
discovered that the values of Dn for n=3,4,… are indeed seen con-
verge to the value D ≈ 1.75. 

Next, we repeated this process for the painting “Farm Near 

Duivendrecht” (Figure 14). Applying the same procedure as 
above, we found that the fractal dimension of the part of the tree 
shown in Figure 14 is again D ≈ 1.75.  

What does all this mean? Can we infer that there is fractal 
complexity in these paintings? Do our results mean that Mondrian 
was somehow attracted by these features and considered them im-
portant to apply to his paintings? Could we perhaps suggest that 
an analogous painting, whose creator is unknown, might have 
been painted by Mondrian, if its fractal dimension turns out to be 
close to D ≈ 1.75? And the ultimate question: is there some ob-
jective “beauty” in this kind of complexity, given that it did inspire 
such great artists like Mondrian and Pollock? 

What do you think? I will not tell you the answers to these 
questions, as I am sure that, by now, you have the necessary 
knowledge to arrive at your own conclusions. I can only hope that 
what I have written here has provided you with enough means to 
form your own opinions. If you wish to discuss your views, even 
provide suggestions as to how they may be presented in the class-
room, don’t hesitate to reach me at tassosbountis@gmail.com. 
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Figure 13. Two grid laying of part of the “The Red Tree”. Left by squares of side L1 and right by squares of side L2 (see text). By dark red 
we have coloured in both pictures the squares that contain inside them any (small) parts of the painted tree and by light red squares those that 
don’t. From Bountis et al., Int. J. Arts Technol. 2017;10:27-42, with permission; Inderscience retains copyright of the article and figure.

Figure 14. Two grid laying of part of the “Farm at Duivendrecht”. Left by squares of side L1 and right by squares of side L2 (see text). 
By dark and light red, we now color in both pictures the squares that contain inside them any (small) parts of the tree and by light blue 
squares those that don’t. From Bountis et al., Int. J. Arts Technol. 2017;10:27-42, with permission; Inderscience retains copyright of 
the article and figure.
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Before proceeding to the next section and discuss the merits 
of applying concepts of Physics to study the history of art paint-
ings, let me close this discussion by referring to some great com-
posers of last century, who also produced “complex forms” of 
classical music. “Wait a minute!” you may protest. “What do you 
mean by ‘classical’ music?’ Fair enough. I will give you a defini-
tion (which is not mine) but fully expresses my view: I shall call 
“classical” any work of Art, which, every time I run across it, I 
find something “new” in it, that I haven’t experienced before. Isn’t 
this, after all, what we have discovered to be true in all the com-
plex forms of Nature we have encountered in this paper?  

Let me finally point to a recent study, in which the technique 
of functional MRI brain imaging was used to show that, when 
mathematicians are exposed to musical or visual beauty there is 
activation in the same part of their brain (medial-orbito-frontal 
cortex), as when they are exposed to a “beautiful” mathematical 
expression, such as Pythagoras’ theorem and Euler’s equation 
exp(iπ)=-1 (Zeki et al., 2014).  

The great painter Paul Cezanne (1839-1906) in his work Girl 
at the Piano (1850) alluded to Wagner’s opera “Tannhauser”, 
which was at that time the symbol of a new kind of art. Further-
more, the impact of music in Picasso’s work was amply exempli-
fied in a 2011 exhibition in the Museum of Modern Art, New 
York, entitled ‘There is Music in Picasso and Picasso is in Music”. 

Finally, the widely acclaimed atonality in the music of the 
Austrian composer, music theorist, teacher, writer, and painter 
Arnold Schoenberg (1874-1951), has been related to works of his 
friend, the painter Wassily Kandinsky (1866-1944), hailed as one 
of the founders of abstract art (Dabrowski, 2003; Wright, 2007). 

Would you not agree that every time we look closely at the works 
of these masters, we discover something new? Isn’t it about time 
we stopped looking and started observing? 

Analyzing paintings through the centuries 
using concepts of physics 

After discovering what mathematics can do to help us better 
understand the complexity of different paintings, it is interesting 
to ask whether other fundamental sciences, like physics, can be 
used to teach us something new, for example, about the way dif-
ferent styles of paintings have evolved in time, more specifically 
throughout the last ten centuries!  

This formidable task was undertaken by the authors of a paper 
entitled “History of art paintings through the lens of entropy and 
complexity” (Sigaki et al., 2018). These scientists undertook the 
formidable task of studying paintings by 2000 artists, for 100 dif-
ferent styles, over 1000 years! 

As a first step, each painting was converted into a matrix 
whose elements are the average values of the shades of red, 
green, and blue. Next, the authors used the probability distribu-
tion of 24 color patterns among the images to calculate two im-
portant physical measures: the normalized permutation entropy 
H (as defined in the paper by Bandt and Pompe, 2002), and the 
statistical complexity C=H•D (Hahn et al., 2021, for more de-
tails), where the entropy H quantifies disorder and D is a meas-
ure of “disequilibrium”.  

The results were remarkable and are shown in Figures 15 and 

[page 28] [Proceedings of the European Academy of Sciences & Arts  2025; 4:50]

Article

Figure 15. “Proximity” of different artistic styles in a complexity - entropy plane, of 41 artistic styles with nearly 500 paintings for each 
style. From Sigaki et al., P. Natl. Acad. Sci. USA 2018;115:E8585-94, with permission.
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16. What do these figures tell us? Let’s start with Figure 15, where 
we first observe that a great number of styles are grouped in the 
lower right part of the figure, characterized by low values of the 
complexity C and high values of the entropy H, while a group of 
much fewer styles appear in the upper left corner of high com-
plexity and low entropy. 

Many of the ones in the bottom half of Figure 15, such as Ren-
aissance, Cubism, Expressionism, Romanticism, Fauvism, 
Pointillism, Art Nouveau, Classicism might be thought of as “re-
lated”, but why is their complexity low and their entropy high? 
Could it be perhaps that their meaning is clear (low C), but their 
content is not very “ordered” (high H)?  

And now look at the upper left part of the graph: I would un-
derstand that Minimalism, expressing simple geometric shapes, 
would be close to Concretism characterized by basic visual fea-
tures, but why would their complexity be higher and their entropy 
lower than the other styles on the right part of the graph? 

Finally, let us look at Figure 16: I find it interesting that Con-
temporary/Postmodern Art, on the upper left, and Modern Art, 
on the lower right, appear distinctly in the graph, in some agree-
ment with the content of Figure 15. Interestingly, if we look 
closer at the box of the lower right, we find that it contains the 
dates 1939-1952 and 1902-1909, which are respectively close 
to the times when Jackson Pollock and Mondrian produced the 
“fractal” paintings we discussed in the previous section “Com-
plexity and the arts”. 

The important question, of course, still looms, whether we 
are justified to use mathematical and/or physical quantities to 
study historically the evolution of the art of painting by analyz-
ing the works of different artists, either individually or in groups. 
Based on what I described in the present section, I believe that 
such investigations are worth pursuing, as they shed new light 

on the different painting styles and their evolution in time and 
help us better understand the evolution of artists and their styles 
throughout the centuries. 

What did we learn about education? 
Thus, we arrived at the end of our journey. I hope you enjoyed 

it and feel you have learned some new fascinating knowledge. 
Now the time has come to ask ourselves, what does all this have 
to do with education, and how we may apply our new knowledge 
to improve current teaching strategies, as early as first year in 
High School. 

I believe that all of you, as educators, have derived some ideas 
from this paper. Why not start, therefore, in your math classes, 
with the simple puzzles I developed in the section “How do we 
motivate students to learn about complexity science” about sums 
of decreasing numbers. Don’t be afraid to teach the concepts of 
finiteness and infinity to your students. Beginning with the inte-
gers N={1, 2, 3, ….} explain to them the concept of countable in-
finities within the integers, and then turn to the fractional numbers 
p=n/m, where n, m are positive integers that have no common di-
visor and satisfy m>n.  

Do your students realize that all these infinitely fractions are 
enclosed in the open interval between 0 and 1? Of course, they 
do. Can they count them? Easy: Number 1/2 by “1”, {1/3, 2/3} as 
“2, 3”, then {1/4, 3/4} as “4, 5”, next {1/5, 2/5, 3/5, 4/5} as {6, 7, 
8, 9} and so on. These numbers are called rationals. Now pose to 
your students the question: can all numbers in (0, 1) be written in 
the form n/m? Let’s find out: Note first that all these fractions, (or 
rationals) when written in decimal form are always composed of 
a finite sequence of digits, repeated ad infinitum. 
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Figure 16. Grouping of different “art styles” through the history of painting, plotted on the H-C plane. Observe the difference in the years 
in each group! From Sigaki et al., P. Natl. Acad. Sci. USA 2018;115:E8585-94, with permission.
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Take, for example, the number 8/13= 
0.6153846153846153846…. Clearly it is formed by the se-
quence 615384, which goes on forever, as the students can verify 
by applying the rules of simple division they learned in Elemen-
tary School. Now what about the number 
√2/2=0.70710678118654752440084436210485.... ? No matter 
how many digits a student computes on a calculator, he/she will 
never arrive at a finite sequence of integers that are repeated ad 
infinitum. These numbers are called irrationals and their prop-
erties cannot, of course, be taught at high school level. But, why 
not let the students experiment with them by themselves, using 
the internet to learn more about them? Don’t you agree that this 
will allow them to generate their own questions and wonder 
about this puzzle on their own? 

Now let’s go to what we learned in the section “The impor-
tant lessons of self-similarity under scaling” and focus on Figure 
6. Refer the students to the literature, where all the steps for cre-
ating Barnsley’s fern are stated explicitly. The students can then 
implement these steps on a simple computer program and con-
struct their own realistic fern leaves! Not only that, but they can 
find in the literature other types of similar sets of simple trans-
formations that will help students draw their own “Christmas 
trees”, “ivy plants” (like those growing on walls), and many 
other fascinating designs, while being also able to create some 
new ones on their own! 

This is what I mean by education. Don’t give your students 
the full answer. Encourage them to think independently and 
search for the truth on their own, as far as they feel comfort-
able. This means you will have to do some extra work yourself, 
recall some of the topics you were taught at the University, but, 
believe me, it will be worth it! Similarly, if you are a physics 
teacher, don’t hesitate to ask your students to find out more 
about galaxies, supernovas, red and white giants and “black 
holes”. Tell them about the thousands of faraway exo-solar 
planetary systems discovered in the last 20 years, in which sci-
entists are searching for “habitable zones” where Earth - like 
planets may exist that could support life similar to what we 
find on Earth! 

If you teach Biology, what is wrong about encouraging your 
students to find out more about the human brain, its different 
functions, the imaging techniques developed to study it as a huge 
neuronal network, composed of many subnetworks that com-
municate with each other through synchronization? And believe 
me, if you start your students in that direction, there is no telling 
how far they may go!   

Finally, talk to your students about the interrelationships be-
tween different sciences, by playing with them the Game of Life 
described in the section “The science of complexity”. Ask them 
to explore the different patterns that arise using different initial 
conditions in the game. Starting from different arrangements of 
“living” (red) and “dead” (black) cells over a grid of NxN small 
squares  (N= 10, 20, 50, etc.), encourage them to find cases 
where we don’t end up with all cells of the same color. Can they 
“play God” and create communities of their own, which will 
sustain “life” forever? Will that “life” be “frozen” to a specific 
number of red and black cells, or will it be dynamically evolving 
“forever”, with cells periodically changing color? 

In this way, you will be able to motivate your students to ap-
preciate the interdisciplinarity among all sciences: i) studying a 
mathematical model will make them think about its determinis-
tic and statistical rules, ii) implementing it on a computer will 
help them understand how to write their own numerical pro-
gram, while iii) interpreting the results will urge them to study 

more about biology and read how life was first generated and 
preserved on our planet. That’s what I call education! 

Now those of you who don’t know me may very well ask: 
That’s fine for you Dr. Bountis to give out all this “wise” ad-
vice, but what have you done to put into practice these educa-
tional ideas that you are preaching? Have you tried to explain 
advanced topics to young people to find out how effective your 
advice can be? 

This is a very fair question that needs to be answered. First, I 
must admit that I haven’t done anything significant to bridge the 
“link” between High School and University. I may have visited 
10- 20 high schools in the Patras region, when invited by a teacher, 
or welcomed high school classes to the University of Patras to 
speak to them about chaos and fractals, but that was all. 

Instead, I put all my efforts in bridging the gap between uni-
versity education and graduate studies. I started, with many other 
colleagues, in 1987, a series of annual Summer Schools and In-
ternational Conferences on Nonlinear Dynamics and Complexity 
that continues to this day. These 35 Summer Schools and 5 Con-
ferences were attended by thousands of university Greek students, 
some hundreds of which went on to graduate studies in these 
fields and are today accomplished faculty members and re-
searchers in Greek and international institutions. 

If you wish to read more about these activities, go to 
http://cosa.inn.demokritos.gr/ and read chapters of my book on 
“The Meaning of Education: A Lifetime of Summer Schools”. 

However, I am still not satisfied, and now that I am a “re-
tired” Professor, I intend to devote a lot of effort to help bridge 
this “weakest link” between High School and University in my 
country. If you wish to assist me in this effort, you know where 
to find me. 
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