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ABSTRACT

The SIR model is one of the most prototypical compartmental models in epidemiology. Generalizing this ordinary differential equation
(ODE) framework into a spatially distributed partial differential equation (PDE) model is a considerable challenge. In the present
work, we extend a recently proposed model based on nearest-neighbor spatial interactions by one of the authors towards a nonlocal,
nonlinear PDE variant of the SIR prototype. We then seek to develop a set of tools that provide insights for this PDE framework.
Stationary states and their stability analysis offer a perspective on the early spatial growth of the infection. Evolutionary computational
dynamics enable visualization of the spatio-temporal progression of infection and recovery, allowing for an appreciation of the effect
of varying parameters of the nonlocal kernel, such as, e.g., its width parameter. These features are explored in both one- and two-
dimensional settings. At a model-reduction level, we develop a sequence of interpretable moment-based diagnostics to observe how
these reflect the total number of infections, the epidemic’s epicenter, and its spread. Finally, we propose a data-driven methodology
based on the sparse identification of nonlinear dynamics (SINDy) to identify approximate closed-form dynamical equations for such
quantities. These approaches may pave the way for further spatio-temporal studies, enabling the quantification of epidemics.
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Introduction

The COVID-19 pandemic has resulted in staggering
numbers of infections and fatalities over the past four years.
According to the World Health Organization (WHO)
dashboard, the number of reported cases worldwide exceeds
775 million, with over 7 million deaths. In the United States
alone, there have been 103 million cases and over 1.2 million
fatalities. Such devastating numbers underscore the need for
significantly advanced preparedness for future pandemics to
monitor and accurately predict disease spread and implement
effective intervention strategies. A major role in managing the
pandemic was played by the rapid development of mRNA-
based vaccines, which saved many lives despite the emergence
of newer and sometimes more aggressive COVID variants,
such as the delta and omicron variants in late 2020 and late
2021, respectively.

From a mathematical perspective, the modeling of infections
through compartmental models has a rich history dating back a
century to the seminal work of Kermack and. McKendrick
(1991). Over time, these developments have been extensively
documented in reviews and books (Herbert, 2000; Brauer and
Castillo-Chavez, 20212; Chen et al., 2014). The advent of the
COVID-19 pandemic has intensified efforts within the applied
mathematics community and beyond to develop predictive
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tools for understanding the temporal evolution and associated
risks of pandemics. Notably, comparative studies across
modeling efforts, like the COVID-19 forecast hub
(https://covid19forecasthub.org), have provided valuable
perspectives. Several reviews have already summarized diverse
modeling approaches (Cao and Liu, 2022; Shakeel et al., 2021),
focusing on aspects such as network metapopulation models
(Calvetti et al., 2020). Despite significant progress, as various
works (Bertozzi et al., 2020; Holmdahl and Buckee, 2020) have
indicated, numerous challenges remain unaddressed and that as
the corresponding Lancet (2023) article indicated—the relevant
pandemic is “far from over”.

In addition to widely used metapopulation models (Calvetti
etal.,2020; Colizza and Vespignani, 2008; Arenas et al., 2020),
researchers have developed spatio-temporal resolution models
to study the progression of epidemics (Kevrekidis et al., 2021;
Mammeri, 2020; Viguerie et al., 2021). Some of these models
employ reaction-diffusion approaches (Kevrekidis et al., 2021;
Mammeri, 2020), incorporating possibly time-dependent
diffusivities to simulate various mitigation measures that
restrict social interactions. Others emphasize the role of inflows
from neighboring regions (Viguerie et al., 2021) and introduce
the concept of population mobility (Jiang et al., 2024). Related
approaches integrating vaccination dynamics can be found in
studies such as Kammegne ef al. (2023). Recently, one of the
authors developed a spatio-temporal model from the first
principles of agent dynamics (and subsequent coarse graining),
incorporating agent mobility and interactions that transmit
infection among nearby agents (Vaziry et al., 2022). This
approach yielded a nonlinear diffusion PDE model at the
continuum limit, representing a generalization of the standard
well-mixed SIR ODE case.

Our objective in this study is to extend the framework
proposed by Vaziry et al. (2022). Our work is motivated by
COVID-19 but is not strictly-speaking aimed as a quantitative
model for COVID-19, as the latter would need to involve
hospitalizations and fatalities, i.e., features that have been
addressed in other publication by a subset of the present authors
both at the homogeneous population (ODE) level (Cuevas-
Maraver et al., 2021) and in the distributed setting of
metapopulation networks (Jiang ef al., 2024; Rapti et al., 2023)
and PDE models (Kevrekidis et al., 2021). While these traits
could easily be incorporated into a more complex version of the
model, we focus here on the key feature of our approach within
the simpler framework of SIR-type models. More concretely,
instead of restricting individuals to nearby locations only, we
account for transportation to more distant areas using a
decaying kernel that reflects typical commuting preferences.
This approach leads to the development of an integro-
differential, nonlocal variant of the SIR model, which
potentially captures the spatio-temporal dynamics more
comprehensively. We explore this model in both 1+1 and 2+1
spatio-temporal dimensions, providing a detailed description in
the section “Model description”, followed by an analysis of
stationary states and their stability in the section “Linear
stability analysis” to understand early epidemic emergence and
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spread dynamics. The section “Evolution dynamics” focuses on
systematic visualizations of space-time dynamics for
susceptible, infected, and recovered populations, highlighting
infection waves under varying kernel parameters such as the
kernel width. In the section “Moment dynamics and their data-
driven inference”, we employ a moment-based approach to
analyze system dynamics, offering insights into infection
epicenters and their spread, driven by empirical data. Finally,
we summarize our findings and outline future research
directions.

Model description

Nonlocal infectious spread

Classic SIR models typically assume a homogeneous
population in space (“well-mixed assumption”), ignoring the
impact of spatial relations on disease spread. However, many
epidemics show directional tendencies and significant spatial
dependence (Colizza and Vespignani, 2008; Arenas et al.,
2020; Rapti et al., 2023; Badr et al., 2020; Glaeser et al., 2022).
It is essential to understand how epidemics unfold in
nonhomogeneous populations and how this spatial variation
influences the overall spread of disease. Here, we adopt a
modeling-minded approach to develop relevant distributed SIR
variants and explore the corresponding phenomenology
numerically. Our aim is to analyze a suite of modeling and
computation tools at the level of partial and ordinary
differential equations for a recently proposed model of spatio-
temporal infection evolution (Vaziry et al., 2022). A natural
next step involves integrating these models with spatial data to
enhance their applicability.

Let S(x, t), I(x,t), and R(x, t) be the population densities
at location x € R? (d = 1 or 2, typically) and time ¢ for the
susceptible (S), infected (I), and recovered (R) individuals,
respectively. We assume that the total population is time-
independent, denoted by f(x), and satisfies

f(x) =1(x,t) + S(x,t) + R(x, t), fRdf x)dx=1. (2.1)

In addition, the three densities are governed by the
generalized integro-differential variant of the dynamical
equations of Vaziry et al. (2022) according to:

St(xr t) = —ﬂS(X, t) fRda(X,Y)I(V' t) dyv
L) =pS00t) fua @I, 0 dy —yi(t), (22)
Re(x,t) =yI(x, 1),

where f is the infection rate, y is the recovery rate, and a(x, y)
is a spatial infection kernel that represents the probability
density that an infected individual at location y infects a
susceptible individual at location x. In the classic SIR model,
each infected individual infects B individuals per unit of time.
Therefore, we impose that for any value of y, the integral over
R? of a(x,y) with respect to x equals 1, i.e., we normalize the
relevant kernel:

Jpaa(x,y) dx =1, 2.3)
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ensuring that an infected individual still infects £ individuals,
albeit distributed non-homogeneously across space. We let the
spatial interaction take the form of a translation-invariant kernel

a(x,y) = ¢(lx =y, (24)

where the kernel ¢p(|r|) decays as the distance |r| increases.
This implies that the infection is solely determined by the
distance between two individuals. It also reflects the natural
leading-order assumption that an individual has a lower
probability of moving longer distances due to the expected
higher "cost" (in whatever form it may take) of such a trip.
We assume that populations in close proximity exhibit a
stronger tendency for infection, implying direct mobility in
“physical space” between regions. While we make this
assumption for simplicity in this initial exposition, we
recognize that the concept of “effective distance”
(Brockmann and Helbing, 2013) (influenced by various forms
of transportation) may be relevant for future studies.

Connections to the spatially local SIR model

By using the translation-invariant kernel (2.4), we establish
a fundamental connection between the spatially nonlocal SIR
models (2.2) and the local models derived in Vaziry et al.
(2022), which represent the continuum limits of nearest-
neighbor interactions. We use the change of variables £ =y —
x and obtain

[ tx-yiondy=1co+

Tl (6, 0) [oa 82 UED A€ + [oa @ (EDOGEH €. (2.5)

When the function ¢(|r|) is predominantly concentrated
around r = 0, the nonlocal model approximates the spatially
local SIR model in Vaziry et al. (2022) (after we drop the high-
order small terms)

Si(x,t) = —=BS(x,)I(x,t) — uS(x, ), (x,¢t),
I(x,t) = BSCe, )I(x,t) + uS(x, t) L, (x,t) —yI(x,t), (2.6)
R.(x,t) =vI(x1),

where u = 62/2 and o2 is the second-order moment of the
density ¢. This formulation demonstrates how, for small o, the
nonlocal model simplifies to a local model with an added
nonlinear diffusion term, capturing the spatial spread of
infections.

The above analysis suggests the connection between the model
presented here and that of Vaziry et al. (2022). It is straightforward
to see that with a §-function kernel, our proposed model reduces to
the standard SIR ODE framework, as the §-kernel implies only
local interactions, resulting in an ODE-based approach. The work
of Vaziry et al. (2022) generalizes this by allowing individuals to
move from a “grid point” (ie., their neighborhood) to an
immediately adjacent grid point (neighboring areas). Here, we offer
a further generalization, allowing individuals to move to more
distant points with a probability that decays with distance.
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It is important to note an observation that applies to both nonlocal
and local cases. Specifically, the models examined here not only
conserve the total population in an integral sense, as per Equation
(2.1), but also conserve it locally at every x (i.e., S(x,t) +
I(x,t) + R(x,t) is conserved for all spatial positions x and does
not depend on time t). This implies an assumption of “shorter-
term” mobility, where individuals move around but return to their
base, rather than a scenario involving migration from one location
to another. In future considerations, and in line with the mobility
patterns discussed in Arenas et al. (2020) and Rapti et al. (2023),
it might be relevant to incorporate time-dependent transport
terms. These terms would conserve the total population globally
but not necessarily locally. Having set up the model and clarified
its main assumptions, we now analyze its mathematical features.

Linear stability analysis

As S(x,t), I(x,t), and R(x,t) are related by the
conservation of population (2.1), we proceed in the linear
stability analysis with the governing equations of only two
densities: the susceptible and infected population densities
S(x,t) and I(x,t). We consider the linear stability around the
equilibrium state

I(x,t) =0, S(x,t) =S,(x), 3.1

where no infection exists. In the linear stability framework,
I(x,t) and S(x, t) may grow exponentially with respect to time
t following a small initial perturbation of the epidemic. We
formulate their initial growth using

S(x,t) =S,(x) +eS;(x)ert, I(x,t) = el (x)e?t, (3.2)

where 1 denotes the leading eigenvalue of the linearized system
of (2.2), and S;(x) and I;(x) are the corresponding
eigenfunctions associated with the leading eigenvalue A4,
representing the spatial pattern of growth in S(x, t) and I(x, t)
initially.

Spatially local SIR models
We substitute (3.2) into the local SIR model (2.6) and keep
the leading-order terms, obtaining

uSo()L"(x) + BSe () (x) =yl (x) = AL (x),
—BSo ()11 (x) — uSp () 1," (x) = A5 (x).

The eigenvalue A signals potential instability when A > 0, with the
corresponding eigenfunction I; (x) indicating the spatial direction in
which the infection grows. This growth, in turn, decreases the
susceptible population along the spatial direction of S; (x). Given
that the eigenfunction I; (x) reflects the spatial epidemic growth
from a background vanishing value, we are particularly interested in
nonnegative eigenfunctions I;(x) to ensure that I(x,t) stays
nonnegative as a population density. We refer to nonnegative
eigenfunctions as epidemiologically relevant ones.

We study the eigenvalue problem (3.3) forbothd = 1 andd =
2 with the boundary condition

3.3)

|llim L(x)=0. 3.4
X|—00
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In numerical simulations, we employ homogeneous Dirichlet
boundary conditions for sufficiently large computational
domains. Recall that Sy(x) can be arbitrarily chosen. For the
case d =1, we choose two representative susceptible
population densities, which are a Gaussian density S§ and a
periodic density S5

S§(x) o exp[—(x —3)?],S5(x) « 3sin(3x) +3.1.  (3.5)

Our choice reflects the expectation that localized blobs
represent significant population concentrations for Sg,
while a periodic decomposition is suited for more complex
population profiles in the case of Sg as the potential Fourier
decomposition of these more intricate patterns. We
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normalize the density S, so that it initially integrates to 1
on the computational domain.

We show the eigenfunctions I; (x) of the eigenvalue problem
(3.3) in Figure 1. For the Gaussian initial density S§’ in (3.5), we
only find one epidemiologically relevant eigenfunction,
corresponding to the largest eigenvalue A = 0.322. For the
periodic initial density Sg in (3.5), we find two corresponding
epidemiologically relevant eigenfunctions in the problem (and
domain) under consideration, both associated with the largest
eigenvalue 4 = 0.236, due to the degeneracy associated with the
two effective blobs in the initial density. The corresponding
eigenvectors reflect the potential growth in either one or the other
blob, while the remaining one subsides, as shown in Figure 1.

0.2 0.25 0.25
(a) (b) (c)
015 0.2 0.2
0.15 0.15
0.1
0.1 0.1
0.05 0.05 0.05
0 0 0
1 2 3 4 5 2 3 4 5 6 2 3 4 5 6

Figure 1. Eigenfunctions I; (x) of the local SIR models (2.6) with (a) the Gaussian initial density S§' and (b,c) the periodic initial
density Sg . For all simulations, we use the same parameters § = 0.8,y = 0.1, and u = fa2/2, where ¢ = 0.1, and the computational
domains for the two cases are [1,5] and [/2,117/6], respectively.

Spatially nonlocal SIR models

In a similar fashion as before, we substitute the spectral
stability expansion of (3.2) into the nonlocal SIR model (2.2)
and obtain that

=YL (x) + BSo(x) f]Rd a(,y)h(y)dy =2aL(x),

—BSo(0) fpaa b ) dy = 25,(). OO

We solve the above eigenvalue problem and show the
eigenfunctions corresponding to the two densities S in (3.5) in
Figure 2. We select the Gaussian kernel

1
2no

exp (— M) 3.7

202

a(x,y) = ¢(lx =yl =

with the kernel width parameter o = 0.1. For the Gaussian
density S§, we obtain one epidemiologically relevant
eigenfunction, associated with the largest eigenvalue A =
0.323. For the periodic density Sg, we only observe one
epidemiologically relevant eigenfunction, which is associated
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with the largest eigenvalue 4 = 0.238. We then vary the kernel
width parameter o and solve the eigenvalue problem (3.6). The
leading eigenvalues are shown in Figure 2¢c. As o increases, the
maximum eigenvalue decreases for both initial densities S in
(3.5). This trend is linked to the normalization of our kernel: as
the kernel becomes narrower, the infection probability is higher
in the immediate vicinity, leading to a more rapidly developing
spatial wave of infections. Conversely, with a larger o, the
infection probability is weaker nearby and stronger at greater
distances, making it less likely for localized populations to
generate a rapidly growing infection. We also observe that
when the kernel width ¢ is small, the nonlocal SIR model (2.2)
closely approximates the local SIR model (2.6), which results
in similar leading eigenvalues in the linear stability analysis.
For the case d = 2, the linear stability analysis is analogous to
the d = 1 case, ultimately resulting in a more computationally
expensive variant of the above eigenvalue problems. To offer a
prototypical sense of the results, we choose parameters § = 100,
y = 0.5, and o = 0.1 and consider the linear stability around two
equilibrium densities, the Gaussian and periodic densities:
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Sg (1, X2) o< exp[—(x; — 3)? = (x; — 3)?],
S5 (xq, x3)  3sin(3x,) + 3.1. (3.8)

When the equilibrium density is Gaussian (S§) [in this case,
centered at the point (3,3)], both the local and nonlocal SIR
models have only one eigenvalue associated with an
epidemiologically relevant eigenfunction. The eigenvalues are
27.160 for the local model and 27.269 for the nonlocal model.
Similarly, when the equilibrium density is periodic (Sg ), both
models again have one single eigenvalue corresponding to an
epidemiologically relevant eigenfunction, with eigenvalues of
A =9.520 for the local model and 2 = 9.557 for the nonlocal
model. Notice that our periodic state is quasi-one-dimensional,
as it does not depend on the variable x,. In both settings, cases
with sufficiently small ¢ have eigenvalues and growth rates
similar to those of the local models. The significantly larger
eigenvalues in the d = 2 case are due to the higher infection
parameter £ used to accelerate the spread of the epidemic in the
numerical simulations. The decrease in the relevant eigenvalue
with increasing o can be explained similarly to the previous
paragraph. Linear stability analysis also reveals that in the d =
2 case, a smaller kernel width parameter o leads to a closer
alignment between the nonlocal model and the corresponding
local model.

Evolution dynamics

We now turn to the detailed dynamical comparison of the
nonlocal and local SIR models (2.2) and (2.6) for both d = 1
and d = 2 cases. We use the initial conditions:

1(x,0) =nly(x), S(x,0) =1 —-nSe(x), R(x0) =0 (4.1)

Original Research

where 7 is the ratio of the infected population initially, and I,
and S, are the spatial distributions of the infected and
susceptible populations, respectively. We require that both I,
and S, integrate to 1 and they are not necessarily the same. In
the spatial domain, we use the pseudo-spectral method for the
d = 1 local model and the central finite difference method for
the d = 2 local model. We have confirmed that the particular
choice of numerical method does not affect in any way the
nature of our conclusions. For the nonlocal model, we apply the
composite rectangle rule to approximate the relevant integral.
We perform the time integration using the fourth-order Runge-
Kutta method.

One-dimensional spatial SIR models

We investigate the epidemic evolution for both the local
and nonlocal SIR models. We use the Gaussian initial
conditions:

Io(x) o exp[—(x —2.5)%], Sp(x) « exp[—(x — 1.5)?], (4.2)

where we deliberately let the infected and susceptible
populations be centered at different locations. We vary the
kernel width parameter ¢ in (3.7) and examine how nonlocality
influences the epidemic spreading. We show the evolution
dynamics of both local and nonlocal models in Figure 3.

In this example, we select the epicenter of the infection at a
location significantly separated from the area with the highest
population density. Initially, a small group of infected
individuals is clustered around x = 2.5, while the susceptible
population is centered at x = 1.5. As the dynamics unfolds, the
infection spreads to the left, creating a densely infected region
around x = 1.5, where most of the susceptible population was
originally concentrated.

0.2 0.15
(a)

0.15
0.1

0.1
0.05

0.05
0 0

1 2 3 4 5 2 3

0.5
(b) (c) 5S¢
P
0.4 5
$03
’<
02 T
-
\\-\_
0.1
5 & 01 02 03 04 05
a

Figure 2. a,b) Eigenfunctions of the nonlocal model with ¢ = 0.1 and different initial densities in (3.5). The corresponding eigenvalues
are A = 0.323 for (a) S and A = 0.238 for (b) Sg .¢) Leading eigenvalues varying with the kernel width parameter ¢. In all simulations,

we fix parameters f = 0.8 and y = 0.1.
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R for local model
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100 0
0 2 4
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100 0
] 2 4
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50 o2
100 0
0 2 4

x

press

Figure 3. Evolution dynamics of the spatially local SIR model with ¢ = 0.1 (the top panel) and spatial nonlocal SIR models with
different width parameters ¢ = 0.1, 0.5, 1 (the bottom three panels). We fix the initial infection ratio n = 0.1, infection rate § = 0.8,

recovery rate y = 0.1, and u = Bo2/2.

Over time, the number of infected individuals decreases as
the disease subsides, and those who were infected transition
into the recovered status. At each spatial location, we observe
infections starting from 0, peaking, and then declining,
following similar dynamics to the classical non-spatial SIR
models. The local SIR model (2.6) closely approximates the
nonlocal SIR model (2.2) when the kernel width o is small. In
both the local case (and similarly in the weakly nonlocal case),
it is interesting to note that there exists a “wave of infection”
that outskirts to locations of x < 1.5. This coincides with the
areas containing the largest susceptible populations over
extended periods. We will return to this point when we explore
the moments of the system. Ultimately, in all scenarios, the
population transitions to a uniform distribution of recovered
individuals.

As the kernel width o increases, infections reach the far-left
region earlier compared to the local models or nonlocal models
with smaller kernel widths. This is because nonlocal models
facilitate long-range infections. Normalizing the interaction
kernel ensures that each infected individual affects the same
number of susceptible individuals across different models. In
the nonlocal models, infected individuals are distributed more
widely across space, whereas in the local models, they are more
concentrated. In the case where o = 1, we also observe that
infections emerge more slowly near the peak of the susceptible
population (around the x = 1.5 region) compared to cases with
smaller kernel widths. In the local model or nonlocal models

[Proceedings of the European Academy of Sciences & Arts 2024; 3:42]

with smaller kernel widths o, the dynamics of the susceptible
population near x = 1.5 exhibits a vacuous region and shows
pronounced spatial heterogeneity at t > 25. This occurs
because when infections reach the population center around
x = 1.5, infected individuals become contagious and further
propagate the disease to nearby individuals in the vicinity. This
reinforcement mechanism concentrates the infection near the
population center, leading to rapid infection of all susceptible
individuals within a short period. In contrast, for o = 1, the
susceptible population displays a smooth spatial transition for
t > 25 and a more uniform distribution across space. This is
attributed to infections being spread more broadly, resulting in
smoother spatial distributions. Similar discussions are provided
in Appendix for the case where the centers of the initial
densities S, and I, are co-located.

Two-dimensional spatial SIR models

We now consider the d = 2 case, using periodic initial
conditions for the susceptibles and a localized “blob” of
infection:

So(x1,%5) < 3sin(3x,) + 3.1,

Iy (x1, x5) X exp [— (x1 - 7?")2 - (xz - 7?”)2] . 4.3)

The susceptible population is periodic in the x;-direction and
homogeneous in the x,-direction, forming two quasi-one-
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dimensional blobs centered at x; = 57/6 and x; = 31/2. The
infected population is initially centered at (7m/6, 71/6),
situated in the middle of the two blobs of the susceptible
population, leading to symmetric infections in the two blobs.
We plot the iso-surfaces of the evolution dynamics of the 2d
nonlocal SIR model with ¢ = 1 in Figure 4.

T T2

Figure 4. The iso-surface representation of the evolution
dynamics of the 2d nonlocal SIR model (2.2) with the width
parameter 0 = 1. The infection rate is § =100 and the
recovery rate y = 0.5. The initial infection ratio 7 = 0.01. The
initial conditions S,(x) and I,(x) are given in (4.3) and the
computational domain is [7/2,117w/6] X [m/2,117/6]. The
three population densities (S(x, t), I(x,t), and R(x,t)) have
constant function values 0.05,0.035, and 0.045 on their
respective iso-surfaces.

In the iso-surface of the susceptible population with an iso-
contour value of 0.05, we observe that the susceptible
population decreases and stabilizes as the majority becomes
infected around t = 1.5. Since the infection source is initially
located at x, = 7m/6, the x, distribution of the populations is
centered around x, = 7r/6, indicating a faster reduction in the
susceptible population at this location compared to its nearby
regions. On the other hand, the x; epicenter of the infection
dynamics is clearly at the location of the blobs, i.e., atx; = 57/6
and x, = 3n/2. The infected iso-surface corresponds to the
value I(x, t) = 0.035. The infected population begins to appear
(in terms of its iso-contours) before the susceptible population
subsides around ¢t = 1.25, and it eventually disappears around
t = 4, at which time the recoveries have taken over; the latter
two have also originated from (57/6,7n/6) and (37/2, 7/6), as
is clearly discerned in Figure 4. Initially, the infected
population appears also near (57/6,7n/6) and (37/2,71/6),
with the x,-coordinate aligned with the initial centers of the
susceptible blobs and the x,-coordinate with the initial infection
center. The water-drop shape of the iso-surface illustrates two
distinct phases of the infected population: growth and decline,
representing the infection and recovery processes, respectively.
Notably, the infection growth rate in the first phase is faster than
the recovery rate in the second phase. The recovered iso-surface
corresponds to a constant value of R(x,t) = 0.045. The
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recovered population begins to appear at t = 2.5 as the infected
population decays in the initial infection spots. It continues to
grow in the surrounding regions until it encompasses the entire
susceptible population. In numerical simulations, we observe
that a smaller kernel width parameter ¢ results in behaviors
closer to that of the local model. For the local model (or the
nonlocal models with small ¢ values) with the same initial
conditions (4.3), the iso-surfaces resemble those in Figure 4.
However, the concave surfaces of the susceptible iso-surfaces
are more pronounced in the local model due to stronger local
infection effects. We also explore a 2d local spatial model with
Gaussian initial conditions and present the iso-surface plots in
Appendix.

Decay speed of the susceptible population

In this section, we examine how nonlocality affects the rate
at which the susceptible population decreases. As a concrete
diagnostic, we examine the infinity norm of the susceptible
population density in space (i.e., | S(-, t) ll,,) and record the time
that I S(-,t) I, decays to 40% of its initial value, which we
denote by T,¢¢,. While this percentage choice is not particularly
special, it is representative of the time scales of the decay
dynamics due to the infection. We fix other parameters and
show how T4, changes with the kernel width parameter o in
(3.7) in Figure 5.

40— |
' /
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0l — /
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20 /// P o
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05 06 07 08 09 1 0.5 1 15 2 25
0 a

Figure 5. The decay time T,y changing with the width
parameter ¢ for: (a) 1d and (b) 2d nonlocal SIR models (2.2).
Among all simulations, we fix the initial conditions and all
parameters except for o.

For the 1d and 2d nonlocal SIR models, we observe that
Tyo9, increases as the kernel width parameter o increases,
indicating that it takes longer for the susceptible population to
decline with larger widths. Specifically, the local model is most
efficient in transmitting the infection, as intuitively expected,
and as was previously explained. In the local model (2.6),
infections spread quickly to areas of high population density,
where infected individuals affect nearby susceptible
individuals, leading to rapid decay of the susceptible population
in these dense regions. In contrast, in the nonlocal models,
infected individuals infect susceptible individuals more evenly
across space, thereby delaying the depletion of the susceptible
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population, particularly in localized scenarios considered here.
For progressively larger width parameters o, infections spread
more widely and more evenly, resulting in a later time for the
maximum susceptible density to decay.

Moment dynamics and their data-driven
inference

Moment dynamics offer insights into the overall behavior
and distribution of infected and susceptible populations over
time. They are a valuable diagnostic tool for understanding
epidemic progression in both temporal and spatial contexts,
particularly in identifying patterns and rates of change. In this
section, we investigate how the kernel width parameter o
affects these dynamics in terms of moments, with the goal of
inferring the underlying dynamics using a data-driven
approach. We define moments associated with a nonnegative
function g as

_ Jpax*g@xt) dx

Q) =g G t)dx,QY(t) = g k=12, (5

where g is replaced by one of the three population density
functions (S, I, or R) in this section. The zeroth-order moment
Qé’ is the total mass of population g, Qf is its center of
population, and Qf relates to the population density’s variance.
More concretely, the variance V() is given by

2
V() = fe % dx = Q¢ — (@9)". (5.2)
Evolution dynamics of moments

We solve the 1d nonlocal (2.2) and local (2.6) SIR models
using the Gaussian initial conditions in (4.2), and present the
dynamics of the moments associated with the infected and
susceptible populations in Figure 6. Notably, the moment
dynamics of the local model align closely with those of the
nonlocal model when the kernel width ¢ is set to a small value
of 0.1.

We observe that the total infected population, QJ, initially
rises as the epidemic spreads but then declines towards zero as
most individuals transition from infection to recovery,
consistent with the classic SIR models. In the local model or the
nonlocal models with small kernel widths, the infection
predominantly affects nearby individuals more intensely
compared to the more evenly distributed effect in the nonlocal
models with larger kernel widths. Consequently, the infected
population peaks earlier, around ¢ = 18, in the local model and
the nonlocal models with small o, in contrast to the later peak
observed in the nonlocal models with larger kernel widths.
Conversely, in progressively more nonlocal scenarios (e.g.
models with smaller ¢ values), the overall infection intensity is
weaker earlier on but persists for a longer duration. We also
observe that the center of mass of the infected population, Qf,
decreases over time. Initially centered at x = 2.5, the infected
population shifts leftward towards the center of the susceptible
population near x = 1.5 as the epidemic progresses. This
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movement slows down once the infection reaches the
central region at x =15. While this saturation-like
behavior is seen in the local models, consistent with the
spatio-temporal evolution discussed earlier in Figure 3,
there appears to be a residual wave of infection spreading
towards smaller x values. The moment dynamics, both for
the local model and the nonlocal case with ¢ = 0.1, clearly
illustrate this trend. In the nonlocal models, the variance
of the infected population initially increases for a short
period due to nonlocal spatial infections. Shortly
afterward, the infections accumulate near the center of the
susceptible population near x = 1.5, reducing the second
moment, over the period of high infectivity. As the first
wave of infection passes, the infected individuals recover,
and the number of infected individuals decreases, causing
the variance to increase again.

For the susceptible population, its zeroth moment
decreases as a result of the infection. The center of mass
stabilizes after an initial decrease, influenced by the
reduction of susceptibles at larger values of x due to the
higher concentration of infections in that spatial region.
Ultimately, as the infection diminishes the susceptible
population, this contributes to the growth of its second
moment.

Data-driven inference of moment dynamics

The (local and) nonlocal SIR models presented herein
describe the spread of epidemics through spatially
distributed populations. Deriving closed-form dynamics
for the moments of these population distributions is
desirable but challenging. Each moment depends on
higher-order moments, resulting in an infinite hierarchy of
coupled equations that cannot be simplified without
suitable closure approximations. The nonlinearities and
spatial dependencies in the model further complicate these
relationships.

To address this paucity of results regarding the
(nonetheless well-defined as shown above) moment
dynamics, we utilize a data-driven approach whereby we
feed the time series of such moment quantities to a widely
used package for the sparse identification of nonlinear
dynamics (SINDy) (Brunton et al., 2016). SINDy
constitutes a data-driven methodology that aims to identify
governing equations from time-series data. More
specifically, it constructs a feature matrix from a library of
candidate functions and identifies the underlying dynamics
by representing the system as a sparse combination of
candidate functions. In particular, we represent the
dynamics using

y=0y)Z, (53)

where O(y) is a feature matrix formed by a library of candidate
functions and Z is a sparse coefficient vector.

We obtain = by minimizing a loss function

EZ =argming, |y —O0®E" l,+ A1 = II,. (54)
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Figure 6. Moment dynamics of different models for (a-c) the infected population and (d-f) the susceptible population. For all
simulations, we fix the parameters f = 0.8 and y = 0.1. We use u = f5%/2 and ¢ = 0.1 for the local model and use ¢ = 0.1, 0.5, 1

for the nonlocal model.

We apply SINDy to learn the dynamics of the moments of the
infected population, in which y = (Qf, @4, @1). Given the nonlinear
nature of the original models, we consider a library of three
polynomials that includes linear, quadratic, and product terms (i.e., a,
a?,and ab). We solve the nonlocal model with ¢ = 1 forI(x, t) and
compute the corresponding moments to obtain the time series of y.
Using the time series of moments up to t = 50 as data, we learn the
governing equations of the infected moments. Predictions are made
for t > 50, and the predicted dynamics are compared with the true
dynamics in Figure 7 a-c.

The learned dynamics closely match the true moment dynamics
of the infected population, both during the training period
(0,50] and the testing period (50,100). The inferred terms and
coefficients of the inferred dynamics are detailed in Table 1.
Similarly, we use SINDy to learn the dynamics of the
susceptible moments, where y = (Q3, 05, Q3) in (5.4). We use
the true moment dynamics during the interval [0, 60] as training
data and then predict the dynamics for the interval [60,100].
Figure 7 d-f shows the learned dynamics alongside the true
dynamics.

Table 1. Coefficients and terms in the inferred moment dynamics of the infected population.

Q0 & Qs @Q*  (@D*  (@)* Q@i Q@ Qi@
Q(’) -1.177 0161 —-0.294 -0.047 -0.065 0.091 0.903 —-0.589 0.045
Q{ 0.093 0.085 0.024 0 —0.046 -0.063 -—-0.004 -0.231 -0.029
Qé 0.707 -0.063 0.160 -—0.290 0.027 -0.283 0.043 -—-1.637 0.042
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The learned dynamics closely overlap with the true dynamics, in line, e.g., with the arguments of Sauer et al. (2022). The inferred
indicating that SINDy effectively infers the dynamics of the terms and coefficients of the inferred dynamics are detailed in
susceptible moments. Notice that we have found this to be the case Table 2.
when considering the dynamics past the maximum of the epidemic
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Figure 7. The true and learned moment dynamics of the infected (a-c) and susceptible (d-f) population.

Table 2. Coefficients and terms in the inferred moment dynamics of the susceptible population.

Q Q! Q¢ @)? (@) (@) @ei Qe &3
0 3133 —4549 8208 0196 3.680 0573 —1.881 -2.443 —6.748
05 —0.014 0 0.135 0.001 —0.005 —0.009 0.006 0015 —0.081
0§ —0.660 0920 —1491 0001 -0.695 —0.143 0362 0389  1.193
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Conclusions and future challenges

In this work, we proposed a class of nonlocal analogs of the
SIR models in space and time, developed as a generalization of
the recent proposal of Vaziry et al. (2022). These models, in the
limit of small variance, closely match the local models of the
above work but also consider distributed interactions that decay
with distance, generalizing the nearest-neighbor scenario
originally considered. We performed linear stability analysis
and obtained the dynamical evolution of such models for
different degrees of nonlocality in both one- and two-spatial
dimensions. We developed suitable visualizations of interest in
their own right, particularly in the two-dimensional setting, as
it presents spatial extensions of the well-known temporal
epidemic compartmental evolution curves.

More importantly, we developed a series of diagnostics,
including the different moments of the compartmental
distributions and timescales associated with them, which enable
us to perform a systematic comparison of the local and nonlocal
spatial dynamics of the system and to intuitively explain the
simulation observations. As a significant step in diagnostics, we
set up a prototypical example of data-driven approaches to
develop effective ODE models describing the epidemic
moments. The successful realization of this approach offers
promise for deriving relevant closed-form dynamical equations
that describe, at a reduced level, the spatio-temporal evolution
of epidemic dynamics.

It is important to emphasize that we have deliberately
chosen to present the features of this nonlocal model at the level
of fundamental SIR-model dynamics. This prototypical spatial
SIR model can then be adapted, with appropriate modifications,
to various epidemic settings. For example, it can be modified
for the flu if recovered individuals immediately become
susceptible again, or for COVID-19 if infected individuals are
split into asymptomatic and symptomatic, with the
symptomatic further divided into hospitalized, recovered, and
deceased (Cuevas-Maraver et al, 2021). In this sense, the
nonlocal model serves as a foundational framework for spatial
epidemic modeling, easily adaptable to different diseases
through the incorporation of their specific characteristics.

Naturally, this effort suggests several directions for future
study. Arguably the most important challenge is connecting the
mathematical and computational analysis presented here with
realistic data. While a kernel dependent on distance only may
be a meaningful first approximation, it is also realistic to expect
an anisotropic, directionally dependent kernel and to
mathematically explore the quantitative impact of such
dependencies. With suitable spatial distribution data of
infections, it is crucial to identify (i.e., reverse engineer) the
kernel that accurately describes spatial infectious interactions.
Such an inference problem is explored in the setting of a
mobility-based SIR model (Jiang et al., 2024).

More broadly, developing and validating spatio-temporal
models of epidemics at both smaller and larger scales—such as
across multiple provinces, countries, and beyond-represents

OPEN aACCESS

Original Research

a crucial and intriguing direction for further epidemiological
exploration. It is also conceivable that with appropriately
distributed spatio-temporal data, machine learning methods
such as PINNs (Raissi et al., 2017), DeepXDE (Lu et al.,
2019), or similar approaches can be used to extract PDE-level
models for spatial epidemic propagation. Such studies are
currently underway and will be detailed in future publications.
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