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Introduction 
The use of mathematical models1 has become increasingly 

commonplace in many fields, including biology, physics, eco-
nomics, sociology and engineering. Mathematical models are ab-
stract representations of systems or processes that allow 
researchers to study their behaviour under different constraints, 
understand the mechanisms behind a set of observations, and, fi-
nally, to make predictions. Those predictions are then typically 
compared with observation in the real world. Often, the basic 
models are based on observations from the past. 

Is a model equivalent to its computer implementation? The 
short answer is, of course, no. It starts by the well-known fact that 
any number, such as for instant 1, can only be represented by a 
finite amount of resources on a computer (float, double). Those 
limitations are well known and studied and have the awareness 
of modelers and users. However, a detailed reflection of this mat-
ter is mandatory, because: 
1.  Reflecting on this distinction between a model and its imple-

mentation offers insight into our view on mathematical mod-
els, how we represent them and how this changes over time.   

2.  Studying the equivalences (or lack thereof) of mathematical 
models and their implementations can allow us to understand 
some core reasons for the lack of reproducibility of compu-
tational results (see, e.g., 1-3). 

3.  The topic draws attention to recent trends and innovations in 
academic publishing, which shape future research. 
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ABSTRACT 

A recent trend in mathematical modelling is to publish the computer code together with the research findings. Here we explore the 
formal question, whether and in which sense a computer implementation is distinct from the mathematical model. We argue that, despite 
the convenience of implemented models, a set of implicit assumptions is perpetuated with the implementation to the extent that even in 
widely used models the causal link between the (formal) mathematical model and the set of results is no longer certain. Moreover, code 

publication is often seen as an important contributor to repro-
ducible research, we suggest that in some cases the opposite may 
be true. A new perspective on this topic stems from the acceler-
ating trend that in some branches of research only implemented 
models are used, e.g., in artificial intelligence (AI). With the ad-
vent of quantum computers, we argue that completely novel 
challenges arise in the distinction between models and imple-
mentations.
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1          In this paper we do not question the different views on what mathe-
matics is such as a Platonists’, formalists’, logicists’, intuitionists’, em-
piricists’ or structuralists’ views, rather we purely are interested in how it 
is used in today’s science. 
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Code submission for mathematical or computational models 
has become a frequent requirement of funding agencies and aca-
demic journals alike. However, in the literature discussing this re-
quirement (4-7), the differences between model and code 
highlighted here, as well as the potential disadvantages of resort-
ing solely to implemented models, are hardly discussed.  

A model is formulated on the level of equations (or any math-
ematical language appropriate for the system at hand). It is based 
on explicit and implicit assumptions and mostly allows for some 
consistence checks or proofs, for instance a result can be only a 
positive number and never a negative or complex number. Math-
ematical models are abstract formulations derived from human 
thought processes. They come in the form of relations between 
numbers, in the form of formulas or a set of equations. Often, 
those equations cannot be studied fully analytically (i.e., just in 
its original functional form). As a consequence, the original de-
scription is mathematical, but implementations of such a model 
are created for the purpose of running computer simulations or 
evaluating the model beyond what is analytically possible. 

An implicit assumption of a ‘good’ computer implementa-
tion is that the results are a consequence of the mathematical 
model and independent of the model’s specific implementation. 
This also means that any aspect pertaining solely to the computer 
implementation of the model is irrelevant for the model behav-

iour and for the results obtained within the model. Examples of 
such implementation details are the choice of initial conditions, 
the sequence, in which operations formalized in the model are 
executed, and the numerical recipes employed for solving or 
simulating the model. 

In some fields of science, the strength of mathematical mod-
elling is to provide precise quantitative predictions of some 
measurable quantities (Figure 1). In these cases, the model stems 
from a theory2 that claims to represent this aspect of the world 
with maximal fidelity. The quality of an implementation based 
on the mathematical model, which in itself is based on some the-
oretical model, is then typically quantified by the closeness of 
the predicted quantity to the measurement quantity. Even if suc-
cessful in this sense, the application to another case may lead to 
discrepancies, requiring a change in the implementation or its 
underlying model. 

In other cases, a qualitative agreement with observations is 
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2        We use the term ‘theory’ to denote an overarching framework, within 
which specific mathematical models are formulated. Quantum mechanics 
is a theory based on postulates and provides a framework to formulate, 
e.g., a mathematical model of an electron in a potential well. 

Figure 1. Schematic representation of the difference between (a) model implementations published along with the academic results 
and (b) the publication serving as the main source of information about the mathematical model. In (a) information flow and the flow 
of errors or the impact of design decisions, which are not part of the original mathematical model, are coupled, while in (b) due to the 
diversity of implementations by different modelers those decisions by a single modeler are not propagated.
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targeted, as in the case of modelling socioeconomic systems (8,9) 
or other complex systems (10-12). Then the claim of the model-
ling effort is that the model contains all the mechanistic ingredi-
ents to capture a certain (often counter-intuitive) phenomenon. In 
these fields of science particular importance is given to the small-
est, most minimal models capturing an observed behaviour 
(smallest in the sense of containing the smallest number of degrees 
of freedom and/or the smallest number of parameters). Such ‘toy 
models’ or minimal models are a cornerstone of many applications 
of, e.g., statistical physics (13-15).  

With this perspective paper we want to draw attention to the 
non-trivial and crucial relationship between a mathematical model 
and its computer implementation and the subtle and informative 
ways, in which they can be different. But we also want to empha-
size some potential challenges, which come along with the other-
wise commendable trend in academic publishing of requiring 
code submissions for mathematical models (3,16), because we 
feel that the current debate at times underestimates the slight dis-
tortions of the modelling landscape that come along with it. 

 
 

A detailed assessment 
In this section we illustrate our general point about the impact 

of code availability for mathematical models on model diversity 
and provide more details about the distinction of models from 
their implementation. 

 
Technical issues in the implementation  

Re-implementations decouple the information flow from the 
flow driven by small errors and implementation design decisions 
not covered by the original mathematical model. As mentioned 
before, among these are discretization effects, choices of initial-
izations, tie-breaking criteria, the order of executing logical steps 
and many more. Figure 1 is a schematic illustration of this change 
in information flow (with information flow given in green and 
flow of errors and implementation design decisions given in red). 

As an early example of the challenging relationship between 
a model and its computer implementation, Edward Lorenz’s nu-
merical experiments with a 12-variable version of his weather 
model in the early 1960s come to mind. The rounding errors of 
the computer (providing initial conditions only to the third deci-
mal in the output) were enough to lead to drastically different sim-
ulation runs (17). These observations - and Lorenz’s ingenuity of 
interpreting them - culminated in the discovery of a deterministic 
model represented as 3 coupled ordinary differential equations 
(ODEs) - the Lorenz equations - in his seminal paper in 1963 (18). 

Some practical aspects also affect this debate. Model imple-
mentations can be platform dependent (using packages, which 
change over time) or dependent on the numerical recipes (e.g., 
ODE solvers) used. In the computer algebra and programming 
environment Mathematica, for example, a matrix consisting of 
entries 1/2 and a matrix consisting of entries 0.5 can yield 
markedly different results in terms of representation, normaliza-
tion and numerical accuracy, as the first variant triggers the sym-
bolic routines, while the second triggers the numerical routines of 
this programming environment. 

Summarizing, the list, in which a model can differ from its 
technical implementation, is quite long. It includes factors like 
initialization, discretization (e.g., within a solver), implementation 
errors, statistics (length of the simulation, transient, number of 
simulations), tiebreaking criteria, order of update rules, noise im-

plementation (and quality of the random number generator) and 
many more. 

 
Reproducibility - a key argument for the quantity 
of research? 

What can be learned from discussing the relationship between 
a model and its implementation? The best discussed aspect of this 
topic is certainly the reproducibility of scientific results. In Tiwari 
et al.’ study (3), for example, published (and electronically avail-
able) models have been assessed regarding their capability to pro-
duce the results of the core publication behind each model. The 
striking observation in this field of biological modelling, namely 
how limited this direct reproducibility is, has led to a range of rec-
ommendations regarding the publication of model implementa-
tions and the curation of mathematical models. A strong argument 
in favour of this general procedure is provided by evidence that 
reproducible models receive more citations (19). 

Other aspects of these topics are general error propagation 
and the propagation of implicit knowledge beyond the original 
model equations. As a trivial example, to select one element 
among the technical issues discussed above, a particular way of 
choosing initial conditions for a system of coupled differential 
equations hard-wired into the implementation might prevent a full 
numerical exploration of the dynamical scope of the model, unless 
the implementation is altered in this respect, or the model is re-
implemented. Re-implementing existing mathematical model is 
also of high educational value and is often a good starting point 
for a young graduate student. Moreover, it is a kind of quality 
check between implementation and mathematical model (by 
which errors have often been identified in the past, even by mod-
els widely used). 

Note that here our focus is on highlighting a potential danger 
in this practice of required/recommended code publication. It 
needs to be emphasized, however, that indeed availability of im-
plemented models has hugely amplified model (re-)usage and 
comparison of data with models. 

 
 

Beyond standard mathematical models:  
AI and quantum computers 

Here we discuss two new approaches to computing, artificial 
intelligence (AI) and quantum computers.  

 
Data-driven modelling: AI 

Some insight in the relationship between a model and its im-
plementation can be gained by imagining discarding the mathe-
matical model completely and rather directly implement all 
systemic knowledge in the form of a computer program. It then 
becomes obvious that, indeed, the formulation of a mathematical 
model and the design of a computer implementation are also con-
ceptually quite different tasks. If you strive for an implementation 
only, the choice of functions (e.g., linear, quadratic, sigmoidal, 
etc.) and conciseness may be less relevant. If you strive for a 
mathematical model, elegance and simplicity are important factors 
(20). Conceptual mistakes are more easily spotted in equations 
than in their implementations. 

AI is an example of such a purely data-driven approach to 
modelling. There, the implementation task is fully given to the 
training process of the device using available data, and the dis-
tinction between model and implementation becomes impossible. 
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We all experience currently the experiment how far this approach 
can be taken, and which social-economic developments will be 
triggered.  

Both avenues of modelling, theory-driven and data-driven, 
have given rise to modern forms of computation, quantum com-
puters in the theory-driven case, AI in the data-driven case. Figure 
2 summarizes this situation, and also includes the new advent of 
quantum computers. A quantum algorithms running on a quantum 
computer may not necessarily be thought of as the implementation 
of a mathematical model, as in the case of classical computers, 
since the underpinning is the global framework of quantum theory. 
It is rather theory-driven. 

The next section dives a little deeper into the difference be-
tween a computation on a classical and a quantum computer. 

 
Quantum computer 

Quantum computers challenge the classical distinction be-
tween model and implementation in a multitude of ways. In the 
following we will briefly address this novel form of computation 
and discuss it in the context of models and their implementation. 

With the advent of quantum computers novel computing de-

vices will be on the market that will definitely “compute” or 
transfer information in a very different way than classical com-
puters. Here the implementation is even much more different 
since the quantum mechanical theory behind a given algorithm 
is much deeper than in the classical case. Let us explain this in 
more details. 

Let us consider the easiest case, the encoding of a bit, i.e. 
“0” or “1”. Classically, we need a system that can be in two 
alternative states, e.g. a coin, for which we define “head” as 
“0” and “tail” as “1”. The reading device needs to be able in 
distinguishing the two cases (in the optimal case without any 
error). For quantum computing the information needs to be en-
coded in a suitable quantum mechanical system. The “an-
swers” are read out by a (macroscopic) measurement device 
resulting in two different macroscopic states, which are de-
noted by “0” and “1”, respectively. Realizations can be an atom 
in the ground or excited state, the spin, e.g., of a neutron or the 
polarization of a photon.  

However, in strong contrast to classical systems, the two dis-
tinguishable states of a quantum system need not to be either “0” 
and “1”, rather the system can be in a superposition of both alter-
natives before the measurement. Mathematically, the state is de-
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Figure 2. Summary of the concepts driving the distinction between models and their implementation. Left panel: Theory-driven math-
ematical models are explored on their own and with the help of computer simulations. This enables a cycle model → implementation 
→ prediction → comparison with data → model, which also challenges, and eventually contributes to, theory. In this theory-driven do-
main, the emerging technology with the largest impact on modern computation is in the form of quantum computers. Here, due to their 
complexity, quantum algorithms can be considered as derived directly from the overarching theory. In a sense, quantum computers then 
take over the role of models and their implementation. However, conceptually the resulting predictions are rather comparable with the 
model-free predictions encountered in AI simulations. Right panel: Data-driven models are summarized under the broad terms artificial 
intelligence or machine learning. Here, observations are directly translated into implementations. This process creates model-free pre-
dictions via ‘unsupervised learning’ of patterns in the data. In many areas of science, AI as a modern form of computation is taking over 
the role of classical mathematical models.
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scribed by a complex vector which is a combination of the two 
states “0”>, | “1”>, i.e.3 

 
|ψ>=cos 𝛼 |“0”>+ sin 𝛼 eiϕ|“1”> 

 
This combination is called a “quantum bit’’ or shortly “qubit”.  
It contains in a sense infinite information since the values 𝛼, 

ϕ can be taken from an infinite set of numbers. Consequently, a 
quantum state can be initiated in infinite many different states (by 
choosing different 𝛼, ϕ, whereas a classical computer has either 
voltage 0 (state “0”) or voltage 5 (state “1”). However, one needs 
to measure a quantum state, to obtain information about the ini-
tialization, the choice of 𝛼, ϕ. And herewith, the information is a 
one bit information, either “0” or “1”. Of course, this is the same 
for classical computer, you need to use e.g. a Voltmeter to measure 
the voltage, however the measurement does not change the value 
that was there before the measurement. 

So, what role do the parameters 𝛼, ϕ play? Those reveal the 
probabilities of the one bit information, “0” or “1”, but only when 
one repeats the procedure of initialisation and measuring. Then 
from this (infinite) collection of measurements one will find that 
in a series of “0” occur with probability cos2𝛼 and “1” with the 
probability sin2𝛼 =1-cos2𝛼. The parameter ϕ reveals only if the 
state is rotated by some device or a different measurement than 
“0” or “1” is chosen.  

So, the point is that on the theory level, we have the full in-
formation 𝛼, ϕ since we can and must choose them for the initia-
tion, but, depending on the chosen experimental setup, we get only 
partial information about the values. In our chosen setup only in-
formation about 𝛼 and not ϕ was available. Moreover, only if we 
have a repetition of the process, initialization and measurement, 
we get successively access to this information, the quantum theory 
is a probabilistic one. 

To sum up, any theoretical model of a quantum mechanical 
process contains in general more parameters than can be read out 
in one single experimental setting. Some repetition, during which 
one has to imply the hypothesis that no processes take place which 
would change the observable of interest, is needed to access in-
formation.  

Nowadays, the main issue in the simulation of a quantum 
process on a classical computer is that a classical computer can-
not easily process all parameters, thus short cuts have to be im-
plemented in addition to all the problems listed in the previous 
sections. 

A striking other problem in simulation quantum processes 
comes with entanglement, which has no classical counterpart. It 
needs in a classical simulation that parts of computations do de-
pend on each other in a not necessarily causal way. 

Running a quantum algorithm on a quantum computer, on the 
other hand, solves this problem, however, our current quantum 
devices struggle with experimental errors (decoherence), for 
which we so far have not found any simple way to correct for. 

 
 

Conclusions 
In most cases, computer implementations of mathematical 

models are necessary to actually use those models for prediction 

or simulation. Therefore, while mathematical models and their 
computer implementations are technically distinct objects, they 
are functionally intertwined in many applications. The use of 
software to solve mathematical models allows for a more prac-
tical usage, enabling higher model complexity real-world 
predictions and applications. Despite their functional interde-
pendence, it is important to understand the distinctions between 
mathematical models and their computer implementations. 
Mathematical models are conceptual and theoretical frame-
works that describe the behaviour of systems, while computer 
implementations are tangible tools used to simulate 
or predict system behaviour based on those theoretical frame-
works. 

As so eloquently summarized by May (21):  
Until only a decade or two ago, anyone pursuing this kind 
of activity [numerical simulations of mathematical models] 
had to have a solid grounding in mathematics. And that 
meant that such studies were done by people who had some 
idea, at an intuitive level, of how the original assumptions 
related to the emerging graphical display or other conclu-
sions on their computer. We believe that this process is dras-
tically accelerated (and its implicit dangers are substantially 
amplified) by the ‘implementation monoculture’ enabled by 
the distribution of readily implemented mathematical mod-
els. The term ‘implementation monoculture’ means that the 
usage of a model is relying on a single implementation, 
rather than a whole set of diverse implementations, which 
sample as much as possible of the whole possibility space 
(given a single mathematical representation).  
Implementations of the same mathematical model are not 

identical. And from our perspective, understanding is mediated 
by analysing equations (often with the help of numerical simula-
tions), not just by running the computer code. 

We acknowledge the usefulness of model databases [like Bio-
Models (22)], in particular in allowing experimentalists the means 
of directly comparing their experimental findings with available 
mathematical models. We feel, though, that there is a serious dan-
ger in the resulting ‘implementation monoculture’ and we suggest 
incentivizing the reimplementation of existing mathematical mod-
els, in order to help distinguish between universal results of a 
mathematical model and those requiring additional implicit ingre-
dients included in a given implementation. 
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